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Often the analysis of the Fokker-Plan@P) operator near the saddle point is sufficient to characterize the
activated processes. However, there are also situations where the kinetic processes are controlled by the
dynamics far away from the saddle points. Correspondingly, the knowledge of FP kinetic modes in all the
phase space is required in order to describe accurately the activated processes. To this aim we propose a
variational method for approximating the site-localizing functions that are defined as linear combinations of the
FP slow eigenfunctions and describe the stable-state populations. The starting point is the layer expansion
method that has been developed by Matkowsky and Sdi&iam J. Appl. Math.33, 365 (1977; 36, 604
(1979; 40, 242 (198))], which we apply to the covariant form of the FP equation. Error-function profiles
across the separatrix are derived in this way for the site-localizing functions. The same kind of profile is found
in the numerical solutions of a bistable two-dimensional Smoluchowski equation, but about (¢hénso-
called stochastic separatyithat is, in general, different from the deterministic separatrix. Thus the layer
expansion has to be generalized by considering the separatrix as a parametric function to be optimized accord-
ing to a variational criterion for the decay rates. After discretization along the separatrix of the integral relation
for the rate, the variational problem is solved numerically, with satisfactory agreement with the exact numerical
results.[S1063-651X97)08803-X]

PACS numbd(s): 05.45+b

[. INTRODUCTION chowski type, as shown in the pioneering works by Berezh-
kovskii and Zitserman8]. In the presence of a highly aniso-

Often kinetic events are controlled by the crossing of atropic diffusion matrix with properly oriented principal
saddle point of the energy function for the reactive systemdirections such that the saddle-point crossing is driven by its
In these cases a detailed picture of a transition can be derivdest component, the population relaxation is controlled by the
by applying the Kramers theoil] and its multidimensional motion along the slow diffusion component far away from
generalization by Langd®] to the Fokker-PlanckFP) equa-  the saddle point. Another example has been found recently in
tion for time-dependent distributions in the phase space. la simple chain model with two bistable elemeffi§ where
allows a straightforward identification of the system featuresan anomalous type of transitions arises when the frictional
controlling the kinetic process: the energetic factors througltoupling favors localized motions. No saddle point can be
the activation energy and the frictional coupling in the trans-associated with such a kinetic process, which can be assimi-
mission factor that corrects the transition-state thé@$§T) lated to crank-shaft conformational transitions of polymers
result for the rate coefficient. [10,11.

A more complex phenomenology emerges when the ki- Transitions that are not controlled by saddle-point cross-
netic event is driven by the system dynamics far away froming should be considered as a particular category of kinetic
saddle points. A well-studied case, because of its relation tevents requiring methods of analysis more general than the
the Kramers turnover, is the one-dimensional motion in theKramers-Langer theory. As a contribution to this line of re-
low friction limit, where the energy diffusion representation search, we intend to present a variational method capable of
can be appliefl1,3,4]. Correspondingly, the relaxation of the describing the effects of diffusion anisotropy on the two-
slow energy variable near its critical value controls the trandimensional FP equation of Smoluchowski type. It should be
sition process independently of the proximity to the saddleecalled that Berezhkovskii and Zitserman have already ana-
point. The same control by the energy variable opens thé&/zed the main features of the transition rate in the presence
possibility of multibarrier jumps that are absent in the over-of large diffusion anisotropies by projecting out the coordi-
damped regimé¢5—7]. nate for the displacement along the fast component of the

Transition processes independent of the saddle-poindiffusion matrix [8] (see alsd12] and references thergin
crossing are not confined to the low friction limit of the FP This method, however, is not suited to recover the transition
equation. In fact, they are found also in the two-dimensionatate in the entire range of the diffusion anisotropy. Moreover,
overdamped motions described by the FP equation of Smolits results depend on the representation adopted for the time

evolution operator. In fact, nonorthogonal transformations of
the coordinates change the principal directions of the diffu-
*Electronic address: moro@pdchfi.chfi.unipd.it sion tensor and therefore also the results of the projection
TElectronic address: cardin@galileo.math.unipd.it procedure. In the effort to overcome these difficulties an in-
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variant form of the projection procedure was proposed on thsite-localizing function method, which allows the derivation
basis of the normal modes at the saddle ppli®#. But this  of the kinetic equations. In Sec. Il the covariant formalism
choice might not be adequate to eliminate fast motions fafor the FP equation is summarized with the purpose of de-
away from the saddle point. fining the deterministic separatrix that is independent of the
We shall follow a completely different strategy based onstochastic variable representation. In Sec. IV the layer expan-
the evaluation of the FP kinetic modes. By taking the propeﬁion about the deterministic separatrix is performed in order
linear combinations of the FP kinetic eigenfunctions, one cafC derive the asymptotic form of the site-localizing functions.
define a set of site-localizing functions for the populations ofVloreover, a comparison is made with the exact numerical

the stable state9]. Then the transition rates are recoveredSelutions for a model system in order to make evident the

by projecting the FP equation onto the subspace of S’itef_ailure of this type of layer expansion for large diffusion

localizing functions. The shape of these functions near thgnisotropies. In Sec. V the variational layer expansion is pre-

saddle point can be easily derived by employing the norma;f;ented together with its numerical implementation. Also the

mode analysis of the Kramers-Langer thegfg]. Such a ypical results are illustrated in the same section, which is
method, however, is not sufficient when dealing with kinetic ©lloWed. in Sec. VI, by the general conclusions of this work.
events driven by motions far away from the saddle point

since accurate approximations in the entire domain of the !l- TRANSITION RATES FROM THE FOKKER-PLANCK
stochastic variables is required. EQUATION

Some years ago Matkowsky and Schuss developed the | gt ys first summarize the formal description of the sto-
boundary layer expansion originally as a tool for analyzingchastic problem in a domaif}CRM with coordinates
mean exit time problemfl4,15. The same type of proce- y—(x! 2 xNy The functionp®(x) will denote the equi-
dure can provide the shape of the site-localizing functions injprium distribution (probability density, which allows the

the entire phase space. The fundamental ingredient is theyicylation of the static average of any observablef (x)
separatrix line, which is derived from the deterministic ap-according to the equation

proximation of the FP equation. It determines the layer of the
phase space where the local expansion should be performed.
Error function profiles are obtained for the characteristic
functions. Our implementation of the method is based on the

covariant form of the FP equation, with the metric tensor . e . . .
derived from the diffusion matrik16—19. This ensures the with p*(x) being normalized accordingly. Often the actual

invariance of the results with respect to alternative re reser{?hySiCal problem determines a mean-field potential from
: ) resp . PresSeihich the equilibrium probability density is derived as the
tations of the stochastic variables. Moreover, it supplies

natural choice for the distance from the separatrix to be em%oltzmann distribution

ployed in the layer expansion. P x) xcexp{ — V(x)/kgT}. (2.2)

In order to test the method, a comparison will be made
with the exact numerical solutions for the prototype systemOur analysis of the stochastic dynamics will be confined to
of a bistable guartic potential coupled to a harmonic degre@me-dependent distributiorys(x,t) with conserved norm at
of freedom[12,13,2Q. In this way it becomes evident that all timest,
the layer expansion about the deterministic separatrix might
not provide reliable results in the presence of large diffusion

N
ff(x)peﬂ(x)dXEf f(x)pe"(x)<H dxi), (2.2)
Q Q i=1

anisotropies. The numerical solutions have an error-function fnp(x,t)dx—l, 23
profile, but about a line called the stochastic separgfix

23], which is, in general, different from the deterministic and decaying asymptotically to equilibrium

separatrix. This conclusion is supported also by recent cal-

culations of Drozdov and Talkner on an equivalent system lim p(x,t)=p*q(x). (2.4

[24]. totee
The main reason for this failure is precisely the choice of.

the deterministic separatrix as the locus for the layer expal [he appropriate Fokker-Planck equation of Smoluchowski

sion. In order to recover the correct transition rate in theyloe (i.e., the overdamped limit of the Kramers-Klein equa-

entire range of diffusion anisotropies, a method for the de:[Ion [17,29) is written as

termination of the stochastic separatrix should be found. One ap(x,t)/at=—Tp(x,1), 2.5
can benefit from the information that the error-function

shape is preserved in the numerical solutions, by formulatingvith the time evolution operatdr 'specified according to a
on this basis a variational method for the calculation of thepositive-definite diffusion tensab" (x), which, in general,
stochastic separatrix. The basic criterion is the minimizatiordepends on the coordinates

of the decay rate of each stable state. In our treatment also

the metric tensor as a function of the position along the sto- Jd d
) o> Lo =_— ___pi e — peYx) L
chastic separatrix is included among the variational param- ['=— -7 DY ()p™x) -7 P*(X) (2.6
eters in order to optimize the choice of the distance from the
separatrix. (throughout the paper we use the Einstein convention for the

The paper is organized as follow. In Sec. Il the FP equasummation of repeated indigesSuitable boundary condi-
tion of Smoluchowski type is introduced together with thetions should be provided in order to enforce the norm con-
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servation Eq(2.3) [26]. Notice that equilibrium distribution fulfill the condition (2.9), there should be a sharp separation
p®4(x) is the only stationary solution of Eq2.5 under suit- on the time scale between the fildtmodes having a kinetic
able ellipticity conditions. The solution of E@2.5) allows character and the remaining ones describing the local equili-
the calculation of the time dependence of an observigig bration processes, that is,

W: J'Qf(x)p(x,t)dx, 2.7 Av-1<Apm, (2.13

having chosen ¥ ,=\y , into correspondence with the up-
or of the corresponding time correlation function that is re-Per bound to the relaxation times for the local equilibration
quired in the analysis of spectroscopic observati@m. modes. Under this condition, only the kinetic modes survive
In the presence of a mean potenti(x) with well- N the decompositioi2.12 for timest>rg,. Thus the site
defined minima separated by large barriérs kT unity, ~ PopulationsP (t) should be related to the weight of the
one expects that the system evolution can be approximatefginetic modes in the distributiop(x,t). For a precise iden-
described in simple kinetic terms as an ensemble of unimofication, a site-localizing functioi©,,(x) is introduced for
lecular processei@8] for the site populationgor concentra- the stable state associated with the potential minimum,at
tions in the chemical language® (t) of stable stategor ~ Such that
site9, that is,
Pa(t)=f G, (X)p(x,t)dx. (2.19
P (V3= 3 [PyHW(B—a)—P (HW(a—p)], N
pre (2.9 In order to recover from Edq2.14) site populations devoid of
components along the local equilibration modes, the site-
wherew(a— p) is the rate coefficient for the transitien—~8.  localizing functions must belong to the kinetic subspace de-
The relation between a continuum representation such as tfiimed as linear combinations of eigenfunctiogg(x) for
FP equation and the discrete stochastic process of the masjet0,1,... M —1. The unknown coefficients of the required
equation(2.8) has been intensively studied, starting from thelinear combinations can be derived by using the condition
seminal work of Kramer§l], who clearly stated the require- R
ment of the time-scale separation Gu(Xg) =64, (2.19

Uryin<Uieqs (2.9 It is justified on a phenomenological ground since the site
populations of Eq.(2.14 should describe the probability
where 7, denotes the typical time for the local equilibration density integrated in the neighborhood of the stable states.
of a distribution around a stable state, whilg, is the time  Therefore, as stated by E@.15), G,(x) must be unitary for
scale of kinetic processes overcoming the energetic barrierg=%_ while it must vanish in correspondence with the other
Only when conditior(2.9) is satisfied, kinetic equatiorf2.8)  stable states. Notice that the constraidtls leads to the

become effective in reproducing the long-time behati@:,  relation between FP eigenfunctions and the site-localizing
in the time scale ofy;,) of a system. Much work has been fynctions

dedicated to the generalization of the Kramers results for the
rate coefficients in the asymptotic limit of large barri€B3,

while the numerical analysis of FP equations usually sup- ‘f’J(X):% Gu(X) ¢>j(§<a) (2.1
plies the relaxation times in the range of intermediate barri-
ers. for j=0,1,2....M—1 [9]. In particular, for the stationary

A general method for the derivation of the master equamode ¢,(x) =1 one obtains
tion (2.8) has been proposed in R¢f] on the basis of the
spectral decomposition of the FP operator

1= G,(x), (217
[ ¢;(x)p®4x) =\ ¢;(x) p®qx) (2.10 “
for j=0,1,2,. .., with the eigenvalues ordered in magnitude that is, the decomposition of unity by the ensemble of site-
\j<\j; [29] and the eigenfunctions normalized as localizing functions. In conclusion, a precise correspondence

is established according to Eq2.14 between time-
. . . B dependent solutions of FP equations and the site populations
(¢ilp qld’J’>=JQ¢J(X)p )¢y (x)dx=3j;:. (21D \yhose time evolution can be derived exactly in the form of
the kinetic equatiori2.8) with the rate coefficients specified
Nonequilibrium distributions can be decomposed as in terms of matrix elements of the time evolution operator
[9]. Such a method can be considered as an example of the
s general procedures leading to a “coarse theofye., the
p(x’t):; ¢ 0P e M gylp(-,0). (212 kinetic equations from a “fine theory” (i.e., the Fokker-
Planck equation[30].
Each eigenfunctiong;(x) represents an independent dy-  The numerical calculations done for several one- and two-
namical mode of the FP model with an intrinsic relaxationdimensional modelgd] have shown that site-localizing func-
time 1A;. Let us consider a mean-field potential wilh  tions have a steplike behavior: they are nearly constant, with
minima at positions,, for a=1,2,... M. Then, in order to values close to zero or unity, in large regions separated by
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narrow layers with a steep change between the two extrema. M-1
The gradient of site-localizing functions is concentrated in Tr{PA}= E A, (2.2)
such layergand for this reason they might be called gradient =0
layers, which bring the main contribution to the kinetic co-

efficients. In fact, the transition rates can be calculated as with the equality holding if7> projects onto the subspace

determined by the fird¥l eigenfunctions oA [35]. It can be

PSW(a—B)= —(Ga|F|pe°GB> applied to FP-Smoluchowski problems by identifyigvith
the symmetrized evolution operatdt=(p®%) Y2 (p®H?,
:_f peY(x) IGa(X) Dii (x) IGp(X) dx which is self-adjoint. In this case the minimum of{PI"}

a X! ax! determines the subspace of the kinetic modes. By using the

21 projection operator in the subspace of site-localizing func-
(218 {ions under the condition that the superposition integrals are

under the approximation of neglecting the superposition innedligible for s [36],
tegral between different site-localizing functiof®. In Eqg. 1
(2.18), P& denotes the equilibrium population of the site _ eqy 1/ = eq) 1/2
to be calculated by inserting the equilibrium distribution [ 20:’ [(p*9™C.) P‘;“<G“(p Kt (2.22
p%4x) into Eqg.(2.14.

This general method can be applied in two different waysone derives that
As done in Ref.[9], one can calculate exactly the site-
localizing functions from the numerical eigenfunctions of the ~
FP operator in order to establish a direct correspondence be- TP} =2 (G,ITp*G,)/PY=2 w,=> ZO Aj,
tween the FP model and the kinetic equations. Otherwise, by “ “ = (2.23
means of Eq(2.18), estimates of the rate coefficients can be '

obtained from approximate site-localizing functions. As donej e | the condition of the minimum for the sum of decay rates
in the past for similar problem$,13,22,23,31-3}one can  \hen the site-localizing functions span the kinetic subspace.
employ the following equation for deriving the site- Thjs s precisely the optimization condition to be imposed on
localizing functions: the site-localizing functions. On the other hand, each decay
e _ rate is a functional of the corresponding site-localizing func-
Tp*(x)Ga(x)=0. (219 tion only according to Eq(2.20. In conclusion, each decay

In fact, the exponential vanishing of the kinetic eigenvalued@t® W, has to minimized with respect t6,(x) and this
with increasing barrier heights justifies the approximationProvides an independent variational criterion for the optimi-
I';(x)p®{x) =0 for the kinetic modes. The same approxi- zation of a site-localizing function. One can easily show the
mation can be applied also to site-localizing functions agduivalence to the variational method based on the Rayleigh
long as they are given as linear combination of the kinetic Fluotient[23] in the case of two sites with a symmetric con-
modes. However, Eq(2.19 has only one exact solution figuration. The implementation of this variational method
namely, the stationary modgy(x) =1. Thus nontrivial solu- Will beé considered in Sec. V.

tions of Eq.(2.19 can be derived only as local approxima-

tions, in particular, within the gradient layer in order to re- Ill. DETERMINISTIC APPROXIMATION

cover good estimates of transition rates according to Eg. IN THE COVARIANT FORM

(2.18. Analytical approximations of site-localizing functions B ¢ h ¢ blesc
have been obtained for one-dimensional models or near the y means of a change of varables—y(x)

l 2 N . g . .
saddle points in multidimensional probleff&3]. In the fol- =(yy%....y"), alternative probabllrstlc representations
lowing sections it will be shown how Eq2.19 can be can be generated for the same physical problem. It is then

solved for the calculation of site-localizing functions in the Important to deal with approximation schgmgs that are n-
entire gradient layer. variant with respect to the FP representation; otherwise the

An alternative method is based on the following relationresu“s would de_pend on the subje_ctive choice of the coordi-
for the decay ratev,, of the stable state: nate system. This calls for a covariant form of the FP equa-

M-1

tion[16-19.
ped(x) G, . iG, In order to address the problem in all generality, let us
w,= >, W(w—>,3):J —pea g P I(x) o] dx, analyze the effects of the change of variablesy(x) in the
pa @ (2.20 calculation of the time-dependent averdgey),
which derives from Eq(2.18, the summation orG, for ﬁ:J' f(v) | det axk/ avk’ X t d 31
B#a being eliminated according to E@2.17). Therefore, ® y(Q) ()] et YOIPC D sy dys (31

each decay rate/, can be considered as a functional of the ke o ki )
corresponding site localizing functioB (x). Let us con- Wheref(y)=[f(X)],-xy) and detfx"/ay" ) is the determi-
sider the projection operatorP? onto an arbitrary nant of the Jacobian matrix for the transformation. In order
M-dimensional subspace and a given self-adjoint operatd preserve the formal structure of the FP model, the prob-
,A\:,A\-r with eigenva|ues bounded from below and ordered as'iblllty denSity in the new representation should be defined as
Njs\j;, for j=0,1,2, ... . One can demonstrate the rela- )

tion for the trace operation p(y,t)=|delax 1 ay* )| [ p(X,1) Ix=x(y) - (3.2
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Correspondingly, the FP evolution operator with the same

form as Eq.(2.6) holds also in they representation, with the g=— \/g(x DY(x)p¢ q(x) pi ps“(x) L
new equilibrium distribution defined according to E§.2) Vg(
and the transformation of the diffusion ten$87] (3.1
i The decomposition of the time evolution operator
o= 2 2 o 33
axt" axt’ ' Is=lg+ly (3.12

x=x(y)
is obtained by including i’ 5 the terms independent of the

According to Eq.(3.2), the probability densityp(x,t) does efqumbrlum distributionp®¥(x),

not transform as a scalar function but as a measure. Probab
ity functions behaving like true scalar fields provide a more P ) P
convenient framework for a theory of transition rates that Fg=— ——r VI(X)DY(x) ——. (3.13
should be invariant with respect to changes of the coordinate \ X
representation. This can be achieved by using the metric ten-
sor gjj(x) as defined by the differential geometry on Rie-
mann manifoldg39], which transforms as

The operatod’ 5, which determines the probability evolu-
tion in the presence of a homogeneous equilibrium distribu-
tion pg(x) =const, is the standard Laplace-Beltrami operator

oxi’ oxl’ for second-order differential forni89] when the metric ten-
L(y)= x X (%) (3.4  sorand the diffusion tensor are identical. The second term in
gijy i 7 9y (X . .
ady  dy X=x(y) Eq. (3.12,
By means of the determinag(x) of the metric tensor
ly=— Jg(x )b'(x), (3.19

K/ o,k'\72 9(x) a
g(x)=defg;;(x)]=g(y)/[detax*/ay* )]°, (3.9
which includes the drift field

i i — ﬁpS(X) DI](X) ﬁvs(x)
bl(0=DI ()P0 = == S

(3.1

is a first-order differential operator like the Liouville opera-
tor of classical mechanics and therefore can be associated
with the deterministic dynamics of the system. If the contri-
bution of the Laplace-Beltrami operator is neglected, deter-
t)= X, t . L . L o !
PV, =[P4 Lexiy) @7 ministic solutions for the nonequilibrium probability are de-
rived in the form

one can define a new probability distribution

Ps(X;H)=p(x;)/Vg( (3.6)

which behaves like a true scalar figland for this reason it
will be called as scalar distribution in the followings one
immediately derives from Eq3.2),

In particular, a new mean-field potentidl(x), which also
behaves like a scalar field, can be recovered from the scalar

X;t) = 8(x—X(1)), 3.1
equilibrium distributionpgqx), Ps(xit) = olx=x(1)) (319
whered(x—x") is the Dirac delta distribution associated with
peAx) integrals like Eq(3.9):
peAx)= ccexp{ — Vs(X)/kgT},
Vg(X)
(3.8 f(x’)=f Vo(x) 8(x—x") f(x)dx, (3.17
Q

kgT
Vs =VX)+ == Ing(x). while X(t) is a trajectory in the phase spafeto be calcu-

lated from the drift

In this way the change of variables in the integral for the i i
calculation of the averages dx '(t)/dt=Db'(X(1)). (3.18

A simple picture based on the flow in the phase space is
ﬁ:f dX\/Wf(X)pS(X't) (3.9 recovered fronl'y, but this alone cannot give rise to accept-
Q able solutions of the FP equation because of the absence of
relaxation to the equilibrium according to E@.4). On the
does not require the Jacobian of the transformation becausgher hand, the deterministic solutions such as €16

of the factory/g. might be good approximations in the presence of large drifts
The time evolution equation for the scalar distribution iswhen the contributions of the Laplace-Beltrami operator
readily derived from Eqs(2.5 and(2.6): could be neglected.
It should be emphasized that trajectori@sl8 are invari-
Ips(X,t)/at=—T"gps(X,t), (3.10 ant with respect to change of variables because of the cova-

riant forms of the drift(3.15 and of the deterministic opera-
with the evolution operatof in the covariant form tor I'y of Eq. (3.14 as well. This invariance relies on the
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existence of a metric tens@j;;(x) (the boundary layer ex- 1.0
pansion also requires a metric tensor for the definition of an
invariant distance; see Sec.)IM~or a given physical prob-

lem, one might choose it among the observables having the 0.5 I
correct tensorial properties. On the other hand, only the dif-

fusion tensor is available for this purpose in the formal x°
analysis of the FP equation of Smoluchowski type. There- >~ 0.0
fore, as done in past analyses of the covariant FP equation™
[16-19, we shall first use the metric tensor

-0.5
gij(x)=Dj;j(x), (3.19

where D;; denotes the inverse of matr" . Qualitatively, —-1.0
this is equivalent to scaling the distances according to the
square root of the mean-squared displacements in the ab-
sence of the drift.

In order to show some typical trajectories deriving from  FIG. 1. Equipotential contours from E(8.20 with parameters
Eq. (3.18, let us introduce the two-dimensional model thatof Eq. (3.22 for V/kgT=1-4 (dotted lineg, for V/kgT=5 (con-

will be used as the test case throughout the paper. It is chafinuous ling, and forV/kgT=6-10 (dashed lines The potential
acterized by the bistable potential minima are located at the circles, while the diamond identifies the

saddle point. The longshor) arrows are directed along the fast
V(x1,x2)/kgT=A[(xY/%g)2— 112+ 2A[ (X?/xg)COt /2) ]2, (slow) principal direction of the diffusion matri 3.21).

3.2
) . ( 9 verge to the stable states, except those reaching the saddle
where (+x,,0) are the locations of the minima is the  ,4int and defining the deterministic separatrix of the prob-
barrier height inkgT units of the saddle point at the origin, |em.
anda is the aperture angle of the saddle pdire., the angle The deterministic approximation for the site-localizing

between the two branches of the equipotential contour pasgnctions is derived by neglecting the Laplace-Beltrami con-
ing through the saddle point for'=0) and a constant but tipytion Is in Eq. (2.18,

anisotropic diffusion tensor

Dii=DdldL+Ddidl, (3.20) b'(x) —7 Ga(X)=0, (3.23

whered; anddy are the principal directionsd{d,, = 3y ') that is, by isolating the leading term of E(R.19 in the

of its slow D, and fastD; componentsP=<Dy). The angle  |o\-temperature limitT—0 for fixed Di(x) and V(x).

0 between the fast component directidywith respect to the  Then each site-localizing function should be constant along a

x“=0 axis is used to specify its orientation. All the reportedyaiactory derived from Eq(3.18. Since all the trajectories

results, except those of Fig. 7, are derived with the set Ofwithout considering those of the separatroonverge to

parameters stable states, a site-localizing function can assume only a
A=5 a=90°, 0=35° (3.22 finite set of values. The standard partitig®] of the phase

space is done by including into the same domain of attraction

which ensures the validity of the time-scale separat®h3 Q, all the pgints that belong _to trajectories convergirjg to the
for the kinetic modes\,/\, being in this case greater than 30 Stable state,. The separatrix(),; between two adjacent
independently of the anisotropy ratid;/Dg [40]. Since

0<al2, the fast diffusion componer; mainly drives the 1.0
saddle-point crossing, and with large values of the diffusion
anisotropyD¢/D4 one can investigate the kinetic control by

the the slow diffusion component far away from the saddle 0.5
point[13]. In the analysis of the effects of diffusion anisot-
ropy, another model has often been employed characterized ™
by a diagonal diffusion matrix, but with a potential function
that includes also a bilinear coupling between the two coor- >
dinates[12,20,24. However, one can easily demonstrate the 0.5
equivalence of the two models by performing the linear

change of variables leading to a separated potential like that

0.0

of Eqg. (3.20. In Fig. 1 a set of equipotential lines of Eq. -1.0 .

(3.20 are represented, while some trajectories of G189 - -0 -es 00 05 10 1S
are drawn in Fig. 2 foD{/D,=10. The deterministic flow x / %g

has three stationary points: the stable states of the system,

which correspond to the potential mininka=(—x,,0) and FIG. 2. Set of trajectorie€3.18 for D;/D¢=10, with the heavy

X,=(X0,0), and the saddle point at the origin, which is anlines identifying those of the separatrix. The dotted line is the equi-
unstable point of hyperbolic type. All the trajectories con- potential contour through the saddle point.
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domains of attractiod, and (), is associated with the tra- stable statex,, thus taking into account the possible effects
jectories ending up in unstable points of hyperbolic tygee  of the coordinate dependence of the diffusion tensor.

Fig. 2). Correspondingly, the site-localizing functions in the

deterministic approximation are constant within each domain|v. LAYER EXPANSION ABOUT THE DETERMINISTIC

of attraction and, by taking into account Eg.15, one de- SEPARATRIX

rives the explicit form ]
The method of the boundary layer expansion has been

1 if xeQ, developed by Matkowsky and Schusgst,15 originally for
~|l0 otherwise, (324 the calculation of the mean exit time from a given domain.
The same method can be employed to derive a smooth form
that is, a function that is discontinuous along the boundary obf site-localizing functions across the deterministic separa-
the domain(),,. Because of the discontinuity, such a simpletrix, thus overcoming the discontinuity of approximation
approximation cannot be employed to derive the transition(3.24). In this section the bistable problem in two dimensions
rate according to Eq(2.18. The calculation of transition will be examined in all generality, and the comparison with
rates requires a continuous form of site-localizing functionghe exact numerical results will be done for the model system
with smooth changes from the extrema 0 and 1 when passingpecified by Egs(3.20 and (3.21). The invariance of the
through the separatrixsee Sec. IY. On the contrary, the layer expansion will be ensured by identifying the metric
calculation of equilibrium site populations according to Eq.tensor with the diffusion tensor according to £§.19. We
(2.19 is possible since the derivatives of site-localizing shall continue to use explicitly the notation for the metric
functions are not required. Because of the step function beensor in order to introduce a geometrical description of the
havior (3.24), this is equivalent to the integration pf4x) layer about the separatrix, which can be employed also with
within a domain of attraction alternative choices df;;(x) (see Sec. Y.
The layer expansion takes a simple form by using as co-

G(x)

eq_ — e ordinates the displacemenalong the separatrix and the dis-
Po= JQ g G.(X)Pstx)dx tancep from the separatrix. Let us specify the coordinates of
the separatri%(},z in a parametrized form
=(1/2) fﬂ va(x)exp—Vy(x)/kgT}dx, (3.29 X(N)=(x*(N),x3(N)), (4.

with a real parametex. Because of the Riemann structure
attached to the manifold), one can employ the invariant
distance

A dx (N’ dxi(n)]22
0= dw{%g”(xw)) o w2

whereZ is the normalization

Z= L)\/g(x)exp{—vs(x)/kBT}dx. (3.26

Sometimes it is convenient to use the free endfgyto ac-

count for the equilibrium population of site, instead of the arbitrary parametkrto denote the points at

eq_ _ the separatrix. The unit vector locally tangent to the separa-
Pa=ex~FalkeT)/Z. @20 ix is then defined as
An analytical estimate of the free energy,, Ti(1)y=dx (1)/d| 43
2
F.=V(X,)+ kBTT In del{ %/%Jl /ZWkBT} , with the normalization derived from E@4.2),
X=X, T'() g x(INTI()=1. (4.9

3.2

(328 As long as the separatrix is a particular solution of the deter-
is derived by applying the Laplace methptll] to the inte-  ministic equation(3.18), the drift at the separatrix must be
gral (3.29 after a parabolic expansion of the potential aboutparallel toT'(1), that is,
the stable state

b'(x(1)=B(HT'(), (4.9
L 1[dAV(x) o
V() =Vs(Xa) + 5 | 7T (X' =X ) (X =X1,). with the scalar functioB(l) determining the magnitude of
X=X, the drift. The metric tensor allows the definition of the unit

(3.29 vectorN'(l) orthogonal to separatrix at a given positign
In Sec. Il we identified the stable states with the minima N‘(I)gij(x(l))TJ(I)zo,

of the mean-field potential(x) for the equilibrium distribu- (4.9
tion (2.2). This is certainly legitimate in the presence of a N‘(I)gij(x(l))Nj(I):l.

constant diffusion tensor, but in the general case the correct _

choice is necessarily provided by the stationary points of EqThen the displacement aloniy'(l) supplies the natural
(3.18 since only they are truly invariant with respect to the choice for the distance from the separatrix. In order to deal
change of variables. Therefore, the minima of the scalar powith an invariant distance (which is, independent of the
tential V¢(x) [Eqg. (3.8)] should be considered as the true starting coordinate representatiah, one should introduce
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the geodetic linex' (1) orthogonal to the separatrix at the 1 9 P P
osition| as solution of the equation —— — Vo(y)D'(y) = +b'(y) —[G.(y)=0
p q 3y W g(y)D"(y) 2] (y) ay'] (y)
X (w) | dx(p) dx(p) (4.14
?ﬂLF}k(X(M)) du du O 4.7 , _ ,
K M M by performing a low-temperature expansion, that is, by scal-

_ i i - ing the temperature a6— €T for fixed D'I(y) and V(y).
W!th [dX(u)/du] ,=o=N'(I) as the boundary condition and pecause of the relatiof8.15), this is equivalent to scaling in
I'jy the standard Christoffel symbol derived from the metricgq (4.14) the drift asb'(y)—b'(y)/e by keeping the diffu-

tensor[39]. Notice that the geodetics are straight lines if thegjon tensor fixed. The layer expansion is implemented by
metric tensor is constant sind&, =0 in such a case. The jnyoking the working hypothesis that in the limit-0 the

invariant distance from the separatrix is calculated by ap- gjq |ocalizing functiorG,, is invariant after an/e scaling of
plying to these geodetics the definition of Riemann arclengtl?he distance from the sgparatrix that is

measure like in Eq4.2).
Distancesp and | supply the natural representation for G (p'|):é (p/\/; I)+O(\/E) 4.15
performing the layer expansion, and in the following we “ “ ’ ’
shall employ the FP operator expressed in these coordinategith éa(.,.) independent ot. The leading term of Eq4.14)
is of first order with respect to &/and can be isolated by
y=(yLy>)=(p.D). (4.8 considering the limit

Correspondingly, both the diffusion tensor and the drift field

€ J
assume a very simple form at the separatrix. By taking intolim| ——= —
account that e—ol Va(y) %

(3x‘(y)) ) =0. (4.16

. J ) J
Va(y)D"(y) — +b'(y) Ev

5 GalplVel)

. axi(y) _
=N'(l), ( =T'(l), (4.9
ay* p=0 0 ay* p=0 0, “9 After the substitutionp— py/e the final equation for the

asymptotic site-localizing functions is derived in the form
a unitary metric tensofand therefore the diffusion tensor 5
alsg is obtained from Eq(3.4) for p=0, [ d

Jd
) ) W-FB(')E‘F(D(UP
[9ij(V)]p=0=23ij, [D(y)],=0=0". (4.10
where e=1 has been restored. The third term of E4.17)

From Eq.(4.5 one derives the drift in thg representation  derives from the contribution

J
% Ga(Pal)ZOv (417)

[bYy)1,—0=0, [b%(y)],—o=B(),  (4.1) b 0G (pl\el) 3G (p',) . bl(p’\e,l)
m P, = n Im
with, according to Eq(3.15, B(l) determined by the gradi-  ~° J 9P €0 Ve
ent of the scalar potentidl (y) along the separatrix . ﬁéa(P'J) - bi(p,1)
1 oV t?p' = p 1
B(I)=—ﬁ< Sl(y)) . 4.12 p0
B N )0 (4.18
The dependence &' (y) on the distance from the separatrix Wwith p’ = p/\Je and the last limit being the derivative of the
is specified for smalp as orthogonal component of the drift singé(0,1)=0.
The trial function for the solution of Eq4.17) is pro-
L ) abl(y) vided by the error-function profile with respect to the dis-
b (y)=w(l)p+0(p9), w(l)= 7 : tancep
=0
o Gulp)= 2% fpl2a(1)} e [ e ear
Jdpsl)=zTser = 5= S )
with 1/w(l) determining the time scale for the motion or- P 22 e 27 = Jo

thogonal to the separatrix. It should be stressed out that co- (4.19
ordinatesy employed in the layer expansion are independent
of the starting representation. Because of the invariant With the width o(l) dependent on the positidnalong the
character of the measure employed in their definition, théeparatrix. The proper choice of the sign in £4.19 en-
same values of would be recovered for a given point 6f  sures an asymptotic behavior fpr-+o in agreement with
also by using a different set of coordinatés=x’(x) for the  Ed. (2.19. After substitution of the trial function into Eq.
FP equation. This feature ensures the invariance of the layé#-17), the following differential equation is recovered for
expansion with respect to the different but equivalent reprethe width:
sentations of the same stochastic problem. do(l)?

Let us now analyze Eq2.19 for the calculation of site- o)™ _ 2
localizing functions in they representation B dl =20(l)o(h™=1, 4.20
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Near the saddle poirt of V4(y), whereB(lg)=0, a linear 1/77“)5\/1/0(|)2+V<2)(|)/k3-|-_ (4.27)
expansiorB(l)« (I —1g) holds. Therefore, the only finite so- s
lution of Eq. (4.20 atls is given by the equation In the presence of a sharply defined minimumvgtl) cor-

responding to the saddle point bf, one can perform an
analytical integration on after the parabolic expansion of
V4(1), thus recovering the result of the Kramers-Langer
analysis of the flux at the saddle point

w('s)
W(w—B)= T exp—[Fs—F, 1/kgT}, (4.28

Uo(19)%=2w(lg), (4.20)

which supplies the boundary condition for solving E420
[42]. Even if the analytical solution can be written explicitly
(14,15

Idl’ '
U(|)2:—J’Ismexp<hdl 2w(1")/B(l )), (4.22

the numerical solution of Eq4.20 with a finite-difference
scheme is more convenient when functiand) and B(l)
have a complicated dependencelo®n the other hand, Eq.
(4.22) allows one to demonstrate thafl)? is always a posi-
tive quantity.

Once the profile of site-localizing functions has been de
termined, one can calculate the transition rafe— ) ac-
cording to Eq.(2.18. By using they representation and tak-
ing into account that according to Eq.(2.17
Gg(y)=1—-G,(y), the following equation is derived:

where the free energyg of the saddle point is given by the
same relation(3.28, but with x(Ig) substitutingx,,. If the
diffusion tensor is independent of the coordinates which
caseV(x) andV(x) differ by an additive constant according
to Eq. (3.9, Eq. (4.28 is equivalent to the result of the
standard Kramers-Langer analysis of the flux over the saddle
point[3]. However, some differences could emerge with dif-
fusion tensors explicitly dependent on the coordinates be-
cause of the different functional form of the mean-field po-
tential V(x) and its scalar counterpat,(x) [Eqg. (3.9)]. In

this case, the advantage of using a covariant formalism
should be evident because it leads to an approxim#4i@8d

that is independent of the coordinate representation.
W(w—>ﬂ):f dyvg(y)exp{[F.—Vs(y) I/kgT The full integration in Eq(4.26 along the separatrix is
required when the transition process is driven by the system
—p?120(1)2 () D (y) f5(y)/Ama(1)?, dynamics far away from the saddle point. This is the case of

our model system with the parameters of E222. In order

(4.23 to perform a comparison, standard numerical methgése

where Appendix B of Ref[9]) have been used to calculate both the
exact transition ratev=w(1—2)=w(2—1) and the exact

p do(l) site-localizing functions. A simple discretization of the inte-

fi=1, fa(y)=- o dl (424 gral in Eq.(4.26 allows the calculation of the approximate

rate when a finite-difference scheme is employed for the so-
and the normalizatioZ [Eq. (3.26] of the equilibrium dis- lution of Eq.(4.20. Notice that the explicit relation
tribution is eliminated by means of the free eneFyyof Eq.

2
(3.27. V(Z)(I):N‘(I)Nj(l)(&—\/(—xz> =—o(l) (429
p=0

In agreement with the hypothesis of the layer expansion, X' ox!
one can simplify the integration in E.23 by (i) evaluat-
ing the diffusion tensor at the separatiX!(y)=4" [and, can be used for the frequency factor when the metric tensor
correspondingly,g(y)=1] and (ii) performing a parabolic is constant.
expansion of the scalar potential with respect to the distance In Fig. 3 the numerical results from E¢4.26) and the

o approximationg4.28) for the transition rate are reported as a
function of the diffusion anisotropp{/D. For large diffu-
271 92 . . . " S .
V() =[Vey)],_ o+ P 9°V(y) sion anisotropies, the transition rate is overestimated by the
sy WY p=0 2 ap? p=0 Kramers-Langer result, which takes into account only the

crossing near the saddle point. This is the situation where the
layer expansion should be useful as long as it describes the
diffusion process far away from the saddle point. However,
as the data of Fig. 3 clearly show, it improves only partially
with V4(1)=V(x(l)). Notice that the first-order term is the Kramers-Langer result, and large deviations from the ex-
missing becausebf(y)]p:():O. In this way the transition act rates are found for increasing ratbg/Dy.

rate can be derived by means of an integration along the In order to understand this finding, the exact site-

2
:VS(|)+%V(S2)(I), (4.25

separatrix localizing functions obtained numerically should be ana-
lyzed. As matter of fact, they have an error-function profile

7(l) in agreement with Eq(4.19 (see Fig. 4, but about a line
W(a—>ﬁ)=f dl exp{[F,—Vs(1)]1/kgT} NTE different from the deterministic separatrix. This features
mo(l) clearly emerges by comparing the deterministic separatrix

X{1+[n(H)a(Hla(1)]?, (4.26 with the so-called stochastic separaff#3], defined as the

points where the exact site-localizing functions take the
wherea(l)=da(1)/dl and value 3, i.e., halfway between their extrenjd4],
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FIG. 3. Scaled transition rate as a function of the anisotropy ~FIG- 5. Deterministic separatricédashed lingand stochastic
ratio D{/D with parameters of Eq3.22. Circles, exact numerical separatricegcontinuous ling for two values of diffusion anisotropy
results; dashed line, E¢4.26) from the layer expansion about the D+/Ds as reported in the figure.
deterministic separatrix; dotted line, E@.28 from the Kramers-

Langer theory. One should notice that the stochastic separatrix in Fig. 5

for D;/D¢=1000 is almost a straight line parallel to the fast

G, (x(\)=13. (4.30  principal directiond; of the diffusion tensof3.21) (see Fig.

1 for the direction ofd;). Also the deterministic separatrix
Of course, the two separatrices should be identical if thdar from the origin tends to be parallel th because in the
exact site-localizing functions is reproduced by the approxisolution of Eq.(3.18 the direction of fast diffusion is fa-
mation (4.19. In Fig. 5 both deterministic and stochastic vored by a strong diffusion anisotropy. This behavior, how-
separatrices are represented in two cases. In the low range ®fer, cannot be realized near the origin because it would
diffusion anisotropy when the layer expansion reproduce§orrespond to a deterministic trajectory climbing the poten-
correctly the transition rate, the two separatrices are clos#al energy.
enough. On the contrary, for large values @f/D  when Another drawback of the previous treatment derives from
significant deviations are found by calculating the rate acthe small width of the layer where approximatith19 can
cording to Eq.(4.26), the deterministic and stochastic sepa-Pe employed. As matter of fact, the coordinayes(p,!) are
ratrices are quite different. Then one can draw the conclusioRot suited to represent the FP equation in the entire domain
that the use of the deterministic separatrix is mainly respon{} of the stochastic variables since the geodetic lines or-
sible for the errors in the calculations of the transition ratethogonal to the separatrix in two different poiritsand |’
This calls for a generalization of the layer expansion, whichmight cross, say, in corresponding with distanpesnd p’,
should be able to determine also the correct stochastic sepégspectively. Then the crossing point would be labeled by
ratrix, instead of using the deterministic separatrix from thefWo sets of coordinated,p) and (',p’). In order to deal
very beginning(see Sec. Y. with a uniquely defined representatignonly the points of
Q) devoid of crossings among the orthogonal geodetics
should be considered. Therepresentation can be adopted
only on a strip of() defined by the condition

lpl<pc(D), (4.3

wherep.(1) is the shortest of all the crossing distances along
the geodetic orthogonal to the separatrixl atWith large
diffusion anisotropies, some crossing points are very close to
the deterministic separatrix, as shown in Fig. 6, where line
connecting the points at.(l) is displayed foD¢/D=1000.
Correspondingly, the layer expansion has to be confined to a
very narrow strip much smaller than the widihof the site-
localizing functions. The ultimate reason for such a behavior
is the identification(3.19 of the metric tensor with the dif-
fusion tensor. In fact, the presence of a large diffusion an-
isotropy generates an orthogonal directi'fl) almost par-
allel to T'(I) when there are small differences between the
orientations of the separatrix and of the fast diffusion direc-
FIG. 4. Profile of the site localizing functio,(x) obtained  tion d;. Such a distortion of the orthogonal direction lowers
numerically forD/D¢=10. the crossing distances.(l). Also this drawback should be

()'*e
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separatricegcontinuous ling for parameters of Eq4.34) and dif-

FIG. 6. Deterministic separatri|dashed lingand the points at fusion anisotropie® /D reported in the figure.

the crossing distance;(l) (continuous ling for D¢/D¢=10. . . . . L
stochastic separatrix obtained numerically, as shown in Fig.

eliminated in a more accurate description of site-localizing” for the angle changed to 60°, i.e., for parameters
functions by means of a different choice of the metric tensor.
Even if the crossing distangg can be enlarged by chang- A=5, «=90°, 60=60°. (4.39

ing the metric tensor, in any case finite values are expected. ] ] )

Therefore, approximatioft.19 cannot be used in the entire AlS0 in this case the stochastic separatrix tends to be aligned

phase space and some sort of cutoff should be introducedith d¢ for D+/Dg large enough, but also the deterministic

while still preserving the continuity of site-localizing func- Separatrix follows the same direction since for>a/2 this

tion in order to recover finite transition rates from £2.19.  does not violate the requirement of deterministic motion with

After introducing a paramete¥ satisfying the upper bound decreasing potential energy. Notice that, given the profiles of

the separatrix, only the points near the saddle point contrib-

E<infi[pc(D/a(l)], (4.32  ute significantly to the rate in the integréd.26) and there-

. ) N fore approximation(4.28 holds.
the trial function(4.19 can be modified as

1 1 erf{p/20(|)} ) V. VARIATIONAL LAYER EXPANSION
—r————— if |plo(l)|<& .

G,=¢2 2 erf({2) (4.33 Let us return to our model system with the parameters of
0 or 1 otherwise. Eq.(3.22. The general message arising from the comparison

with the numerical results is that the error-function profile is

This function is still a solution of Eq(4.17) within the layer  reproduced by the exact site-localizing functions, but in lo-
|p|<&o(l); it is continuous and has the correct asymptoticcations far from the deterministic separatrix when the diffu-
behavior for p—+. One can use such a modified site- Sion anisotropy is large enough. This suggests that the func-
localizing function in the calculation of the transition rate, tional form (4.33 can be used to approximate the site-
and the same resui#.26) is obtained besides the correction localizing functions provided that the separatrix is
factor 1/erf&/2)?. This, however, does not improve at all the considered as a parametric function to be optimized in the
agreement with the exact kinetic rates shown in Fig. 3 sinc&ariational framework based on the minimum of the decay
the correction factor is always greater than unity. rate(2.20. In order to avoid distortions of the directions for

The comparison in Figs. 3 and 5 between the layer exparthe distancep towards the separatrix, also the metric tensor
sion method and the exact numerical results is done for thehould be optimized. Drozdov and Talkner too have pro-
parameters of Eq3.22 of the model. However, the same posed a variational method relying on the error-function pro-
general behavior is found in other cases as lon{gase/2  file of the characteristic functions, but assuming a straight
(and provided the separability between kinetic modes angtochastic separatrp24].
local equilibration mode§4Q]), that is, when the fast diffu- The general method will be presented for problems in two
sion direction is within the aperture of the saddle point. Indimensions without limitations on the number of stable
particular, the stochastic separatrix tends always to betates, while the bistable model specified by E@20-
aligned along the fast diffusion directial} for large diffu-  (3.22 will be considered for its application. The site-
sion anisotropies, this direction not being allowed for thelocalizing function of Eq.(4.33 will be employed in the
deterministic separatrix near the saddle point. A completelyariational calculations with the following parametric func-
different behavior is found whefd|>a/2 for fast diffusion tions: the stochastic separatrix, the width of the site-
directions outside the aperture of the saddle point. In factlocalizing function, and the metric tensor along the separatrix
satisfactory results are recovered from the layer expansion
about the deterministic separatrix that is very close to the X(N), a(N), gij(N)=g;;(X(N)). (5.0
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Specific parametric functions should be considered for eacproximation(5.6) as long as small distancesonly need to
site-localizing functionG,(x), but, in order to avoid a too be considered. It should also be evident that any linear
cumbersome notation, the explicit reference to the state  change of variables with constant coefficients preserves the
left implicit in functions of Eq.(5.2). structure of the metric tensdb.6).

For the sake of convenience, we choose the parameter Also in the variational treatment, the layer expansion is
such that the tangent vectorxf\) has a unitary norm in the conveniently done by employing coordinatgs(p,l). The
Cartesian metrias; (i.e., §;a'a'=a;a'=a'a' for all a), decay ratg2.20 can be written in the following form after

insertion of the site-localizing functio®.33:

t(M)=dx(M)/dh, OOtV =1. (5.2
1
Also the unitary vectot, (\), locally orthogonal to the sepa- Wo= 7 o (E2) f elFa Vs keT—p?20(1)%f (y))
ratrix in the Cartesian metric
. o x DU (y)f(y)/a(l)?d (5.9
OVt (M)=1, tL()t'(\)=0, (5.3 VLY Y
_ with functions f,(y) given by Eq.(4.24 and parameteg
will be employed when necessary. satisfying the constraint Eq4.32). As the second approxi-

Once the metric tensag;;(\) is given, the invariant dis- mation, the diffusion matrix is calculated at the separatrix
tancel, the covariant tangent vectdt(l), and the covariant

orthogonal vectoiN'(l) along the stochastic separatrix are D'(y)=D"(p,1)=D"(0)). (5.9
derived like in Sec. IV, with the set of complementary vec-__ .= = = , ) .
tors This is justified by the hypothesis that only the integration in

a narrow layer about the separatrix is required because of the
Ni(|)Egij(|)Nj(|), Ti(I)Egij(I)Tj(l)v (5.4) steep change of site-localizing functions. Notice that the re-
quired diffusion elements can be derived from the diffusion
whereg;;(1)=[g;;(A\)],-)qy- For a givenl, the distancep  tensor in thex representation according to the relations
from the separatrix will be measured along the straight line

atN'(1), DH(0,)=Ni(N[D" (X) Je=x)N; (1),
X'(p,)=x'(1)+pN(l). (5.5 Dlz(orl):Ni(l)[Dij(X)]x=x(l)Tj(|)-
Also the coordinate dependence of the metric tensor should D22(0,I)=Ti(l)[D”(x)]xzx(,)TJ(l). (5.10

be fully specified and we will employ the following form _ _ _
requiring only the knowledge of the metric tensor at the sto-The same hypothesis allows the parabolic expansion of the

chastic separatrix: potential V¢ with respect to the distange
S — V(y) p* [ PV(y)
(95500 Terpo) =i (- A } ALALS
This is equivalent to assuming a unitary metric tensor in the p=0 =0
y=(p,|) representation: p?
=Vs(H)+pVP (1) + > Ve (I); (5.11)
axt’ axi’
gij(y)Ea_yT 9irj (%) (;_yj"zéij’ (5.7 this is the third approximation invoked in our variational

treatment. Notice that because of E.6), the metric tensor
the derivatives of the coordinates being calculated accordingepends only on the coordindtand therefore the derivative
to Eq. (5.5). Correspondingly, the parametercan be iden- 0f g in the scalar potentidB.8) is not required in the calcu-
tified with the distance along the orthogonal geodetics givenation of the expansion coefficients:
as straight lines in the direction dof'(l). Equation(5.6),

which is equivalent to a constant continuation of the metric v (1)=Ni(1) M
tensor along the orthogonal directions, is the first approxima- s x|
tion invoked in our variational procedure. Of course, also the (5.12
dependence of the metric tensor on the orthogonal distance , -~ [aAV(x)
i ed i V=N (DN ——
should be explicitly parametrized in a more complete treat- s Ix axd
ment, but this would require an overly complicated varia- x=x()

tional procedure. The shortcoming of such an approximation major difference with respect to the layer expansion about
is that the metric tensd®.6) relies on the choice of coordi-  the deterministic separatrix is the presence of the first-order
natesx. If the same definitior{5.5) is applied after a nonlin-  term in the expansiofb.11). Correspondingly, the exponen-

ear change of variables—>x’(x), a different set of orthogo-  tja| function in Eq.(5.8) generates a Gaussian profile cen-
nal geodetics would be derived and therefore also a differefibred at a finite distanc&p from the separatrix,

metric tensor. On the other hand, the layer expansion is

meaningful in the coordinate representations such that the Ap(h)=—=nHVI (1) /kgT, (5.13
change of site-localizing function is confined to a narrow

layer about the stochastic separatrix. Correspondinglywhere(l) is given by Eq(4.27). With all these ingredients,
smooth changes of variables do not modify substantially apthe analytical integration on the distaneean be performed
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in Eq. (5.8, thus obtaining the following relation requiring where Eq.(5.16 has been employed for transforming the
only functions parametrically dependent on the coordihate determinant of the metric tensor. Given all these correspon-

along the separatrix: dences, the same decay rate is obtained by performing
into Eq. (5.14 the change of the variable of E(.18), thus

1 [F V() kT +Ap2272 7 demonstrating the equivalence of the two sets of variational
- elra s B plen . .
P parameters. Such a degeneracy is conveniently removed by
V8 erf(¢12) o : ) : ; :
) using tangent vectors with an unitary norm in the Cartesian
><{hi(I)D”(0,I)hj(l)+D22(O,I)[7;<}(I)/a]2}dl, metric

(5.14 T=t, (5.20
with . : :
which, because of Ed5.2), ensures the identity=X\.
hy;=1, hy()=—Ap(Ha()/a(l). (5.15 A_ second type of degeneracy can be associated with the
scaling of the orthogonal vector
Equation(5.14) is the starting point for the numerical imple- — _
mentation of the variational method. N'=uN', (5.21
First, however, one should eliminate the degeneracy of ) o .
the decay rate with respect to the variational parameters, i.eWith u=u()), without modifications of the tangent vecfdr.
the possibility that different sets of parametric functi¢hg) ~ According to Eq.(5.9), the distance from the separatrix
determine the same decay ratg. Only without degeneracy Scales asp=p/u. Correspondingly, a new metric tensor
can one find unambiguously the optimal variational param-9ij(A) is derived and one can calculate the decay rate with
eters from the minimization of the decay rate. The identifi-the same separatrix of Ed5.1); the width changed as
cation of the degeneracies might be difficult because of th&=o/u in order to preserve the shape of the site-localizing
inclusion of the metric tensag;; among the variational pa- function. Like in the previous analysis, one can demonstrate
rameters. A much simpler analysis can be done by using thi&at the decay rate does not change. Also this degeneracy
tangent Vectoﬂ'i and the Orthogona' Vect(bdi. On the other ShOU|d be eliminated, and th|S iS ConVenientIy done by lelng
hand, a direct relation exists between these vectors and tiBe magnitude of the complementary vechr,
metric tensor. In fact, the metric tensor can be easily derived |
once these vectors are fixed and, in particular, the determi- Ni=t] . (5.22

nant of the metric tensor can be calculated as ] ) )
In this way the parametey, as well as the associated width

Ug()=[T (Ot (TNt (H]2 (5.1 o, assumes the meaning of distance from the separatrix in the
Cartesian metric, as derived from E§.5) for small enough
Therefore, in the following analysis, reference is made top,
vectorsT' andN' with the metric tensor calculated accord- o
ingly. p=t [X'=x'(D]. (5.23
One type of degeneracy is associated with the change in
magnitude of the tangent vector. Let us consider a set o€orrespondingly, a unitary determinag( ) =1 of the metric
parametric functions distinct from those of E§.1) because tensor is obtained from E@5.16 sincet’ N'=N;N'=1, and
of a new metric tensog;;(\) defined by a scaling of the the scalar potential along the separatrix can be identified with
tangent vector the original mean-field potential

T=uT, (5.17) V() =Vsx(1)=V(x(1)=V(). (5.24

with u=u(N\), without modifications of the orthogonal vector  Having fixed the magnitudes of both vectofyl) and

N' and, according to Ed5.5), also of the distancp. Corre-  N;(1), one variable only is left for parametrizing the metric

spondingly, the same parametaf§"), V), », andAp are  tensor. The most convenient one is the angleetween vec-

recovered at a given point of the separatrix while, because abrsN'(l) andt' (1). In conclusion, the parametric functions

Eq.(4.2), the new distanckalong the separatrix should obey required in the variational calculation is reduced to the set

the relation

_ X(N), o(N), ¥(N), (5.29

di=dl/u. (5.18
to be used in the calculation of the decay rate according to

One can easily show that the quantity in the curly brackets ifeq. (5.14) with A= as the integration variable.

Eq. (5.14 does not require modifications. On the contrary, |n order to test the previous variational procedure, the

the exponential function does change because the scalar pgistable problem specified by Eq&.20—(3.22 has been

tential (3.8) includes also a contribution of the metric tensor considered. In this case one can exploit the symmetry of the

FP problem by imposing the conditiong —\)=—X(\),

— o(—N)=a(\), and{—\)=y(\), where the saddle point has
=y VY been taken as the origin for the parameterCorrespond-
9(n) 9(n) ingly, the integral(5.14) for the transition rate can be con-

=pe VsM/keT (5.19 fined to the positive values ¢f=\. Moreover, for computa-

—V(X(\)/kgT e VO))/kgT

expl—V(\)/KgT} =
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tional purposes the stochastic separat(ix) is conveniently 0.1

parametrized in terms of the orientatié\) of its tangent

vectort'(\).

In order to deal with a finite-dimensional variational prob-

lem, the discretization of the integrgb.14) is performed A~ 001} B

with equally spaced mesh poinks. In this way the rate ~

w=w;=w, becomes a function of the variational param- « _

etersd(\;), o(\;), and {(\;) at the mesh points and standard >

algorithms[45] can be employed for the minimization of =

with respect to these parameters. The contribution of each

integration point is weighted by the Boltzmann factor

exp{—V(\;)/kgT}. The points very far from the origin bring 0.0001 . ‘ ! !

a negligible contribution to the rate given the magnitude of 1 10 100 1000

the potential functiorisee Fig. 1. Correspondingly, it is im- D; / Dg

possible to optimize the variational parameters in such loca-

tions because of the insensitivity of the rate. Therefore, the F|G. 8. Scaled transition rate as a function of the anisotropy

optimization procedure has to be confined to a finite portionatio D;/D with parameters of Eq3.22. Circles, exact numerical

of the separatrix. In our calculations we have discretized theesults; continuous line, variational layer expansion.

separatrix up t&/(\)/kgT=12, i.e., sevekgT units over the

saddle point. Thirty mesh points fa=0 have been used to

achieve an accuracy better than 1% fo_r the inteal4. In for the results reported in Figs. 8—10. Correspondingly, the

order to find the minimum of the rate within reasonable COM-~_ 1erk(¢/2) tribut i t by 2% to th timized

putation times, only five independent valugnd equally actor L/er &/2) contributes at most by 2% to the optimize

spaced with respect to) for each parametric functioéi(\), tran3|t|_on_s_rates: .

o(\), and ¢(\) were considered by using a linear interpola- A _S|gn|f|cant |mpr0vem_ept _W|th respe_ct_to th(=T layer ex-

tion scheme to get their intermediate values. This procedurBansion about the deterministic separatrix is achieved by us-

is justified by the rather smooth dependenceoaf these NG the. variational Iay_er expansion. Sausfactory agreement is

parameters in the considered examplesl<a/x,<0.2, ¢ found in the comparison with the exact transition rates, as

and 6 varying in a range of 20° shown in Fig. 8, the largest deviation being about 5%. The

Finally, a discussion is in order about the choice of the€vident improvement with respect to the method of Sec. IV

parameter¢ of the trial function(4.33. We have employed (cf. Fig. 3 derives in the first instance from a correct iden-

the operative definition of, tification of the separatrix. In Fig. 9 the comparison is done
between the exact stochastic separatrix and the variational
separatrix deriving from the optimization procedure for a set

g=cgnflp(N)/a(V)], (5.26  of diffusion anisotropies. In particular for large ratid$/Ds,

A the variational and the stochastic separatrices are nearly co-
incident. The progress with respect to the deterministic sepa-
ratrix should appear evident by inspection of Fig. 5. Also the
width of the site-localizing functions can be compared with
the exact numerical solutions by examining their gradients.
The derivative ofG , [Eq. (4.19] with respect to the distance

¢ p at the separatrix is given as

0.001 -

which agrees with the constraitt.32 when the numerical
coefficientc, is in the range €c,<1. For a given coefficient
C¢, £ depends on the variational parameters of G&@9. In
particular, small values of are recovered from strongly ben
separatrices characterized by short crossing distantes
Then comparably large rates are derived from Eq(5.14)
because of the error function term @/2)? in the denomina-
tor. In other words, the finite size of the layer, which is taken .
into account by the parametér gives rise in the minimiza- 05k -
tion procedure to a penalty for highly bent profiles of the
separatrix. Only in this case can the variational procedure be x~ :
implemented. In fact, the minimization of the rate becomes ~~ 0.0
ill defined numerically when the layer with an infinite width "
is considered by assumirg«, because of the instabilities
arising from deformations of the separatrix towards serpen-
tine profiles and self-crossings. In most cases, the results of
the variational procedure are weakly dependent on the choice  _, ,
of the numerical parameteg, which can be well fixed at the -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
upper bouncc,=1. Some difficulties, however, arise in the X' / %o

low range of diffusion anisotropie®;~Dg because of the

presence of secondary minima for the rate, which can be FIG. 9. Vvariational separatricelashed ling and stochastic
eliminated by using smaller values of. For this reason we separatricegcontinuous ling for parameters of Eq3.22 and dif-
have employed the coefficient=0.1 in all the calculations fusion anisotropie® /D reported in the figure.
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the directiond; of fast diffusion motion for large diffusion
anisotropies. Let us consider E§.14) under the simplifying
condition of a constant widtlr, such that the term in curly
brackets can be replaced by

D0) =t t| [DY(X)xexq1) (5.29

according to Eqs(5.10 and(5.22. Its minimum is attained
whent' =dyg, i.e.,t'=d}. It is precisely this term that domi-
0.08 , , , nates in the optimization of the decay rate whiyiD ;—o,
0.0 0.4 0.8 1.2 1.6 so that the direction' of the separatrix is forced to be par-
A %q allel to the fast diffusion direction.

FIG. 10. Dependence of the widthof the site-localizing func-
tion on the displacement along the separatrix, for parameters of VI. CONCLUSION

Eq. (3.22 and two values of diffusion anisotropies, which are re- L o
ported in the figure. Continuous lines, numerical exact results; Our objective was the determination of the shape of the

circles and squares, variational layer expansion. charaeteristic_ft_mctions Qescr.ibing the kinetilc procesbes
the site-localizing functionsin two-dimensional Fokker-
Planck equations of Smoluchowski type. The starting point
was provided by the boundary layer expansion developed by
(@) . 1 (5.27) Matkowsky and Schus$14,15. This method has been
ap p=0 _2\/}(, ' ' implemented to the calculation of site-localizing functions by
using the covariant form of the FP equation with the metric
) ) » . tensor chosen according to the diffusion maftt6—19. In
According to Eq.(5.23, p can be identified with the Carte- this way we have derived a simple form of the site-localizing
sian distance from the separatrix. Then the widtlban be  fynctions with an error-function shape about the determinis-
derived from the the gradient @, at the separatrix, which {ic separatrix imposed by the drift. Correspondingly, the
can be easily computed from the exact site-localizing funcyansition rate was easily calculated by integration of a
tions proper kernel along the separatrix. However, the comparison
with the exact numerical results for a model bistable system
evidenced large deviations on the transition rates when the
(5.28  diffusion matrix is highly anisotropic. The underlying reason
p=0 is that the deterministic separatrix might be quite different
from the stochastic separatrix of the exact numerical solu-

In Fig. 10 both the exact numerical widths and those resultfions. Therefore we have generalized the procedure by con-
ing from the variational procedure are reported in two case§idering the separatrix as a parametric function to be opti-
as a functions of the position along the separatrix. Fair agreén'z_eo! in the variational calculation of _the transition rate. The
ment is found with deviations of about 10%. On the Contrary’varlatlonatl method aII_ow_ed also the inclusion of _the_metnc
no simple way exists for identifying the angle from the tensor among the variational parameters. By Feklng into ac-
exact site-localizing functions. On the other hand, the deca§®unt the invariance properties of the transition rate, the
rate is weakly-dependent on this parameter, and substantiaﬁ”af“onal problem is confined to the following parametric
the same results reported in Figs. 8—10 would be recoverenctions: the separatrix, the width of the site-localizing
by constraining such an angle, say=0. One can under- functlon,. and _the d|_rect|or_1 for the displacement from the
stand it by considering the limit case of a straight separatrieeParatrix. A finite-dimensional problem has been generated
with a fixed width o. In this situation, the site-localizing anq solved by dlscretlzm_g the integral for the tranS|t|oq rate.
function (4.19 does not depend on the anglesince Eq. Satlsfacter_y agreement is fou_nd for_both the separatrix _and
(5.23 determines the distance from the separatrix indepenth€ fransition rate in comparison with the exact numerical
dently of the direction oN'. In actual cases, the separatrix is solutions, thus demonstratmg.the capepﬂny of th_e variational
at least slightly bentg depends on the position, and the procedure to reproduce the site-localizing functions.
optimization procedure depends, even if weakly,y@R).
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