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Variational layer expansion for kinetic processes

Giorgio J. Moro*

Dipartimento di Chimica Fisica, Universita` di Padova, via Loredan 2, 35131 Padova, Italy

Franco Cardin†

Dipartimento di Matematica Pura e Applicata, Universita` di Padova, via Belzoni 7, 35131 Padova, Italy
~Received 29 July 1996; revised manuscript received 14 November 1996!

Often the analysis of the Fokker-Planck~FP! operator near the saddle point is sufficient to characterize the
activated processes. However, there are also situations where the kinetic processes are controlled by the
dynamics far away from the saddle points. Correspondingly, the knowledge of FP kinetic modes in all the
phase space is required in order to describe accurately the activated processes. To this aim we propose a
variational method for approximating the site-localizing functions that are defined as linear combinations of the
FP slow eigenfunctions and describe the stable-state populations. The starting point is the layer expansion
method that has been developed by Matkowsky and Schuss@Siam J. Appl. Math.33, 365 ~1977!; 36, 604
~1979!; 40, 242 ~1981!#, which we apply to the covariant form of the FP equation. Error-function profiles
across the separatrix are derived in this way for the site-localizing functions. The same kind of profile is found
in the numerical solutions of a bistable two-dimensional Smoluchowski equation, but about a line~the so-
called stochastic separatrix! that is, in general, different from the deterministic separatrix. Thus the layer
expansion has to be generalized by considering the separatrix as a parametric function to be optimized accord-
ing to a variational criterion for the decay rates. After discretization along the separatrix of the integral relation
for the rate, the variational problem is solved numerically, with satisfactory agreement with the exact numerical
results.@S1063-651X~97!08803-X#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Often kinetic events are controlled by the crossing o
saddle point of the energy function for the reactive syste
In these cases a detailed picture of a transition can be der
by applying the Kramers theory@1# and its multidimensiona
generalization by Langer@2# to the Fokker-Planck~FP! equa-
tion for time-dependent distributions in the phase space
allows a straightforward identification of the system featu
controlling the kinetic process: the energetic factors throu
the activation energy and the frictional coupling in the tra
mission factor that corrects the transition-state theory~TST!
result for the rate coefficient.

A more complex phenomenology emerges when the
netic event is driven by the system dynamics far away fr
saddle points. A well-studied case, because of its relatio
the Kramers turnover, is the one-dimensional motion in
low friction limit, where the energy diffusion representatio
can be applied@1,3,4#. Correspondingly, the relaxation of th
slow energy variable near its critical value controls the tr
sition process independently of the proximity to the sad
point. The same control by the energy variable opens
possibility of multibarrier jumps that are absent in the ov
damped regime@5–7#.

Transition processes independent of the saddle-p
crossing are not confined to the low friction limit of the F
equation. In fact, they are found also in the two-dimensio
overdamped motions described by the FP equation of Sm
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chowski type, as shown in the pioneering works by Bere
kovskii and Zitserman@8#. In the presence of a highly aniso
tropic diffusion matrix with properly oriented principa
directions such that the saddle-point crossing is driven by
fast component, the population relaxation is controlled by
motion along the slow diffusion component far away fro
the saddle point. Another example has been found recent
a simple chain model with two bistable elements@9#, where
an anomalous type of transitions arises when the frictio
coupling favors localized motions. No saddle point can
associated with such a kinetic process, which can be ass
lated to crank-shaft conformational transitions of polyme
@10,11#.

Transitions that are not controlled by saddle-point cro
ing should be considered as a particular category of kin
events requiring methods of analysis more general than
Kramers-Langer theory. As a contribution to this line of r
search, we intend to present a variational method capab
describing the effects of diffusion anisotropy on the tw
dimensional FP equation of Smoluchowski type. It should
recalled that Berezhkovskii and Zitserman have already a
lyzed the main features of the transition rate in the prese
of large diffusion anisotropies by projecting out the coor
nate for the displacement along the fast component of
diffusion matrix @8# ~see also@12# and references therein!.
This method, however, is not suited to recover the transit
rate in the entire range of the diffusion anisotropy. Moreov
its results depend on the representation adopted for the
evolution operator. In fact, nonorthogonal transformations
the coordinates change the principal directions of the dif
sion tensor and therefore also the results of the projec
procedure. In the effort to overcome these difficulties an
4918 © 1997 The American Physical Society
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55 4919VARIATIONAL LAYER EXPANSION FOR KINETIC PROCESSES
variant form of the projection procedure was proposed on
basis of the normal modes at the saddle point@13#. But this
choice might not be adequate to eliminate fast motions
away from the saddle point.

We shall follow a completely different strategy based
the evaluation of the FP kinetic modes. By taking the pro
linear combinations of the FP kinetic eigenfunctions, one
define a set of site-localizing functions for the populations
the stable states@9#. Then the transition rates are recover
by projecting the FP equation onto the subspace of s
localizing functions. The shape of these functions near
saddle point can be easily derived by employing the nor
mode analysis of the Kramers-Langer theory@13#. Such a
method, however, is not sufficient when dealing with kine
events driven by motions far away from the saddle po
since accurate approximations in the entire domain of
stochastic variables is required.

Some years ago Matkowsky and Schuss developed
boundary layer expansion originally as a tool for analyz
mean exit time problems@14,15#. The same type of proce
dure can provide the shape of the site-localizing function
the entire phase space. The fundamental ingredient is
separatrix line, which is derived from the deterministic a
proximation of the FP equation. It determines the layer of
phase space where the local expansion should be perfor
Error function profiles are obtained for the characteris
functions. Our implementation of the method is based on
covariant form of the FP equation, with the metric tens
derived from the diffusion matrix@16–19#. This ensures the
invariance of the results with respect to alternative repres
tations of the stochastic variables. Moreover, it supplie
natural choice for the distance from the separatrix to be
ployed in the layer expansion.

In order to test the method, a comparison will be ma
with the exact numerical solutions for the prototype syst
of a bistable quartic potential coupled to a harmonic deg
of freedom@12,13,20#. In this way it becomes evident tha
the layer expansion about the deterministic separatrix m
not provide reliable results in the presence of large diffus
anisotropies. The numerical solutions have an error-func
profile, but about a line called the stochastic separatrix@21–
23#, which is, in general, different from the determinist
separatrix. This conclusion is supported also by recent
culations of Drozdov and Talkner on an equivalent syst
@24#.

The main reason for this failure is precisely the choice
the deterministic separatrix as the locus for the layer exp
sion. In order to recover the correct transition rate in
entire range of diffusion anisotropies, a method for the
termination of the stochastic separatrix should be found. O
can benefit from the information that the error-functi
shape is preserved in the numerical solutions, by formula
on this basis a variational method for the calculation of
stochastic separatrix. The basic criterion is the minimizat
of the decay rate of each stable state. In our treatment
the metric tensor as a function of the position along the s
chastic separatrix is included among the variational par
eters in order to optimize the choice of the distance from
separatrix.

The paper is organized as follow. In Sec. II the FP eq
tion of Smoluchowski type is introduced together with t
e

r

r
n
f

e-
e
al

t
e

he

in
he
-
e
ed.
c
e
r

n-
a
-

e

e

ht
n
n

l-

f
n-
e
-
e

g
e
n
so
-
-
e

-

site-localizing function method, which allows the derivatio
of the kinetic equations. In Sec. III the covariant formalis
for the FP equation is summarized with the purpose of
fining the deterministic separatrix that is independent of
stochastic variable representation. In Sec. IV the layer exp
sion about the deterministic separatrix is performed in or
to derive the asymptotic form of the site-localizing function
Moreover, a comparison is made with the exact numer
solutions for a model system in order to make evident
failure of this type of layer expansion for large diffusio
anisotropies. In Sec. V the variational layer expansion is p
sented together with its numerical implementation. Also
typical results are illustrated in the same section, which
followed, in Sec. VI, by the general conclusions of this wo

II. TRANSITION RATES FROM THE FOKKER-PLANCK
EQUATION

Let us first summarize the formal description of the s
chastic problem in a domainV,RN with coordinates
x[(x1,x2,...,xN). The functionpeq(x) will denote the equi-
librium distribution ~probability density!, which allows the
calculation of the static averagef̄ of any observablef (x)
according to the equation

f̄5E
V
f ~x!peq~x!dx[E

V
f ~x!peq~x!S )

i51

N

dxi D , ~2.1!

with peq(x) being normalized accordingly. Often the actu
physical problem determines a mean-field potential fr
which the equilibrium probability density is derived as th
Boltzmann distribution

peq~x!}exp$2V~x!/kBT%. ~2.2!

Our analysis of the stochastic dynamics will be confined
time-dependent distributionsp(x,t) with conserved norm a
all times t,

E
V
p~x,t !dx51, ~2.3!

and decaying asymptotically to equilibrium

lim
t→1`

p~x,t !5peq~x!. ~2.4!

The appropriate Fokker-Planck equation of Smoluchow
type ~i.e., the overdamped limit of the Kramers-Klein equ
tion @17,25#! is written as

]p~x,t !/]t52Gp~x,t !, ~2.5!

with the time evolution operatorG specified according to a
positive-definite diffusion tensorDi j (x), which, in general,
depends on the coordinatesx,

G52
]

]xi
Di j ~x!peq~x!

]

]xj
peq~x!21 ~2.6!

~throughout the paper we use the Einstein convention for
summation of repeated indices!. Suitable boundary condi
tions should be provided in order to enforce the norm c
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4920 55GIORGIO J. MORO AND FRANCO CARDIN
servation Eq.~2.3! @26#. Notice that equilibrium distribution
peq(x) is the only stationary solution of Eq.~2.5! under suit-
able ellipticity conditions. The solution of Eq.~2.5! allows
the calculation of the time dependence of an observablef (x),

f ~ t !5E
V
f ~x!p~x,t !dx, ~2.7!

or of the corresponding time correlation function that is
quired in the analysis of spectroscopic observations@27#.

In the presence of a mean potentialV(x) with well-
defined minima separated by large barriers~in kBT units!,
one expects that the system evolution can be approxima
described in simple kinetic terms as an ensemble of uni
lecular processes@28# for the site populations~or concentra-
tions in the chemical language! Pa(t) of stable states~or
sites!, that is,

]Pa~ t !/]t5 (
bÞa

@Pb~ t !w~b→a!2Pa~ t !w~a→b!#,

~2.8!

wherew~a→b! is the rate coefficient for the transitiona→b.
The relation between a continuum representation such a
FP equation and the discrete stochastic process of the m
equation~2.8! has been intensively studied, starting from t
seminal work of Kramers@1#, who clearly stated the require
ment of the time-scale separation

1/tkin!1/t leq, ~2.9!

wheretleq denotes the typical time for the local equilibratio
of a distribution around a stable state, whiletkin is the time
scale of kinetic processes overcoming the energetic barr
Only when condition~2.9! is satisfied, kinetic equations~2.8!
become effective in reproducing the long-time behavior~i.e.,
in the time scale oftkin! of a system. Much work has bee
dedicated to the generalization of the Kramers results for
rate coefficients in the asymptotic limit of large barriers@3#,
while the numerical analysis of FP equations usually s
plies the relaxation times in the range of intermediate ba
ers.

A general method for the derivation of the master eq
tion ~2.8! has been proposed in Ref.@9# on the basis of the
spectral decomposition of the FP operator

Gf j~x!peq~x!5l jf j~x!peq~x! ~2.10!

for j50,1,2, . . . , with the eigenvalues ordered in magnitu
l j<l j11 @29# and the eigenfunctions normalized as

^f j upequf j 8&[E
V

f j~x!peq~x!f j 8~x!dx5d j j 8 . ~2.11!

Nonequilibrium distributions can be decomposed as

p~x,t !5(
j

f j~x!peq~x!e2l j t^f j up~•,0!&. ~2.12!

Each eigenfunctionf j (x) represents an independent d
namical mode of the FP model with an intrinsic relaxati
time 1/lj . Let us consider a mean-field potential withM
minima at positionsx̂a for a51,2, . . . ,M . Then, in order to
-
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o-
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fulfill the condition ~2.9!, there should be a sharp separati
on the time scale between the firstM modes having a kinetic
character and the remaining ones describing the local eq
bration processes, that is,

lM21!lM , ~2.13!

having chosen 1/tleq5lM , into correspondence with the up
per bound to the relaxation times for the local equilibrati
modes. Under this condition, only the kinetic modes surv
in the decomposition~2.12! for times t@tleq. Thus the site
populationsPa(t) should be related to the weight of th
kinetic modes in the distributionp(x,t). For a precise iden-
tification, a site-localizing functionGa(x) is introduced for
the stable state associated with the potential minimum ax̂a
such that

Pa~ t !5E
V
Ga~x!p~x,t !dx. ~2.14!

In order to recover from Eq.~2.14! site populations devoid o
components along the local equilibration modes, the s
localizing functions must belong to the kinetic subspace
fined as linear combinations of eigenfunctionsf j (x) for
j50,1,...,M21. The unknown coefficients of the require
linear combinations can be derived by using the conditio

Ga~ x̂b!5da,b . ~2.15!

It is justified on a phenomenological ground since the s
populations of Eq.~2.14! should describe the probabilit
density integrated in the neighborhood of the stable sta
Therefore, as stated by Eq.~2.15!, Ga(x) must be unitary for
x5 x̂a , while it must vanish in correspondence with the oth
stable states. Notice that the constraint~2.15! leads to the
relation between FP eigenfunctions and the site-localiz
functions

f j~x!5(
a

Ga~x!f j~ x̂a! ~2.16!

for j50,1,2,...,M21 @9#. In particular, for the stationary
modef0(x)51 one obtains

15(
a

Ga~x!, ~2.17!

that is, the decomposition of unity by the ensemble of s
localizing functions. In conclusion, a precise corresponde
is established according to Eq.~2.14! between time-
dependent solutions of FP equations and the site populat
whose time evolution can be derived exactly in the form
the kinetic equation~2.8! with the rate coefficients specifie
in terms of matrix elements of the time evolution opera
@9#. Such a method can be considered as an example o
general procedures leading to a ‘‘coarse theory’’~i.e., the
kinetic equations! from a ‘‘fine theory’’ ~i.e., the Fokker-
Planck equation! @30#.

The numerical calculations done for several one- and tw
dimensional models@9# have shown that site-localizing func
tions have a steplike behavior: they are nearly constant, w
values close to zero or unity, in large regions separated



m
in
n
-
s

in

n

ys
e-
he
b
, b
be
n

-

e
ion
i-
a
F
,

a-
e-
E
s
t

e

on

he

at
a
la

e

the
nc-
are

tes
ce.
on
cay
c-
y

i-
he
igh
n-
d

s
hen
in-
the
rdi-
ua-

us

er
ob-
as

55 4921VARIATIONAL LAYER EXPANSION FOR KINETIC PROCESSES
narrow layers with a steep change between the two extre
The gradient of site-localizing functions is concentrated
such layers~and for this reason they might be called gradie
layers!, which bring the main contribution to the kinetic co
efficients. In fact, the transition rates can be calculated a

Pa
eqw~a→b!52^GauGupeqGb&

52E
V
peq~x!

]Ga~x!

]xi
Di j ~x!

]Gb~x!

]xj
dx

~2.18!

under the approximation of neglecting the superposition
tegral between different site-localizing functions@9#. In Eq.
~2.18!, Pa

eq denotes the equilibrium population of the sitea
to be calculated by inserting the equilibrium distributio
peq(x) into Eq. ~2.14!.

This general method can be applied in two different wa
As done in Ref.@9#, one can calculate exactly the sit
localizing functions from the numerical eigenfunctions of t
FP operator in order to establish a direct correspondence
tween the FP model and the kinetic equations. Otherwise
means of Eq.~2.18!, estimates of the rate coefficients can
obtained from approximate site-localizing functions. As do
in the past for similar problems@5,13,22,23,31–34#, one can
employ the following equation for deriving the site
localizing functions:

Gpeq~x!Ga~x!50. ~2.19!

In fact, the exponential vanishing of the kinetic eigenvalu
with increasing barrier heights justifies the approximat
Gf j (x)p

eq(x).0 for the kinetic modes. The same approx
mation can be applied also to site-localizing functions
long as they are given as linear combination of the kinetic
modes. However, Eq.~2.19! has only one exact solution
namely, the stationary modef0(x)51. Thus nontrivial solu-
tions of Eq.~2.19! can be derived only as local approxim
tions, in particular, within the gradient layer in order to r
cover good estimates of transition rates according to
~2.18!. Analytical approximations of site-localizing function
have been obtained for one-dimensional models or near
saddle points in multidimensional problems@33#. In the fol-
lowing sections it will be shown how Eq.~2.19! can be
solved for the calculation of site-localizing functions in th
entire gradient layer.

An alternative method is based on the following relati
for the decay ratewa of the stable statea:

wa[ (
bÞa

w~v→b!5E peq~x!

Pa
eq

]Ga

]xi
Di j ~x!

]Ga

]xj
dx,

~2.20!

which derives from Eq.~2.18!, the summation onGb for
bÞa being eliminated according to Eq.~2.17!. Therefore,
each decay ratewa can be considered as a functional of t
corresponding site localizing functionGa(x). Let us con-
sider the projection operatorP onto an arbitrary
M -dimensional subspace and a given self-adjoint oper
A5A† with eigenvalues bounded from below and ordered
l j<l j11 for j50,1,2, . . . . One can demonstrate the re
tion for the trace operation
a.

t

-

.

e-
y

e

s

s
P

q.

he

or
s
-

Tr$PA%> (
j50

M21

l j , ~2.21!

with the equality holding ifP projects onto the subspac
determined by the firstM eigenfunctions ofA @35#. It can be
applied to FP-Smoluchowski problems by identifyingA with
the symmetrized evolution operatorG̃[~peq!21/2G~peq!1/2,
which is self-adjoint. In this case the minimum of Tr$PG̃%
determines the subspace of the kinetic modes. By using
projection operator in the subspace of site-localizing fu
tions under the condition that the superposition integrals
negligible foraÞb @36#,

P5(
a

u~peq!1/2Ga&
1

Pa
eq ^Ga~peq!1/2u, ~2.22!

one derives that

Tr$PG̃%5(
a

^GauGpequGa&/Pa
eq5(

a
wa> (

j50

M21

l j ,

~2.23!

i.e., the condition of the minimum for the sum of decay ra
when the site-localizing functions span the kinetic subspa
This is precisely the optimization condition to be imposed
the site-localizing functions. On the other hand, each de
rate is a functional of the corresponding site-localizing fun
tion only according to Eq.~2.20!. In conclusion, each deca
rate wa has to minimized with respect toGa(x) and this
provides an independent variational criterion for the optim
zation of a site-localizing function. One can easily show t
equivalence to the variational method based on the Rayle
quotient@23# in the case of two sites with a symmetric co
figuration. The implementation of this variational metho
will be considered in Sec. V.

III. DETERMINISTIC APPROXIMATION
IN THE COVARIANT FORM

By means of a change of variablesx°y(x)
[(y1,y2,...,yN), alternative probabilistic representation
can be generated for the same physical problem. It is t
important to deal with approximation schemes that are
variant with respect to the FP representation; otherwise
results would depend on the subjective choice of the coo
nate system. This calls for a covariant form of the FP eq
tion @16–19#.

In order to address the problem in all generality, let
analyze the effects of the change of variablesx°y(x) in the
calculation of the time-dependent average~2.7!,

f ~ t !5E
y~V!

f ~y!udet~]xk/]yk8!u@p~x,t !#x5x~y!dy, ~3.1!

where f (y)5[ f (x)] x5x(y) and det(]xk/]yk8) is the determi-
nant of the Jacobian matrix for the transformation. In ord
to preserve the formal structure of the FP model, the pr
ability density in the new representation should be defined

p~y,t ![udet~]xk/]yk8!u@p~x,t !#x5x~y! . ~3.2!



m

ab
re
a
a
te
e-

a

he

au

is

e

-
bu-
tor

in

a-
ated
ri-
ter-
e-

th

is
t-
e of

ifts
tor

ova-
-
e

4922 55GIORGIO J. MORO AND FRANCO CARDIN
Correspondingly, the FP evolution operator with the sa
form as Eq.~2.6! holds also in they representation, with the
new equilibrium distribution defined according to Eq.~3.2!
and the transformation of the diffusion tensor@37#

Di j ~y!5F ]yi

]xi 8
]yj

]xj 8
Di 8 j 8~x!G

x5x~y!

. ~3.3!

According to Eq.~3.2!, the probability densityp(x,t) does
not transform as a scalar function but as a measure. Prob
ity functions behaving like true scalar fields provide a mo
convenient framework for a theory of transition rates th
should be invariant with respect to changes of the coordin
representation. This can be achieved by using the metric
sor gi j (x) as defined by the differential geometry on Ri
mann manifolds@39#, which transforms as

gi j ~y!5F ]xi 8

]yi
]xj 8

]yj
gi 8 j 8~x!G

x5x~y!

. ~3.4!

By means of the determinantg(x) of the metric tensor

g~x![det@gi j ~x!#5g~y!/@det~]xk/]yk8!#2, ~3.5!

one can define a new probability distribution

ps~x;t ![p~x;t !/Ag~x!, ~3.6!

which behaves like a true scalar field~and for this reason it
will be called as scalar distribution in the following!, as one
immediately derives from Eq.~3.2!,

ps~y,t !5@ps~x,t !#x5x~y! . ~3.7!

In particular, a new mean-field potentialVs(x), which also
behaves like a scalar field, can be recovered from the sc
equilibrium distributionps

eq(x),

ps
eq~x![

peq~x!

Ag~x!
}exp$2Vs~x!/kBT%,

~3.8!

Vs~x!5V~x!1
kBT

2
lng~x!.

In this way the change of variables in the integral for t
calculation of the averages

f ~ t !5E
V
dxAg~x! f ~x!ps~x,t ! ~3.9!

does not require the Jacobian of the transformation bec
of the factorAg.

The time evolution equation for the scalar distribution
readily derived from Eqs.~2.5! and ~2.6!:

]ps~x,t !/]t52Gsps~x,t !, ~3.10!

with the evolution operatorGs in the covariant form
e

il-

t
te
n-

lar

se

Gs52
1

Ag~x!

]

]xi
Ag~x!Di j ~x!ps

eq~x!
]

]xi
ps
eq~x!21.

~3.11!

The decomposition of the time evolution operator

Gs5GLB1Gd ~3.12!

is obtained by including inGLB the terms independent of th
equilibrium distributionps

eq(x),

GLB52
1

Ag~x!

]

]xi
Ag~x!Di j ~x!

]

]xj
. ~3.13!

The operatorGLB , which determines the probability evolu
tion in the presence of a homogeneous equilibrium distri
tion ps(x)5const, is the standard Laplace-Beltrami opera
for second-order differential forms@39# when the metric ten-
sor and the diffusion tensor are identical. The second term
Eq. ~3.12!,

Gd[
1

Ag~x!

]

]xi
Ag~x!bi~x!, ~3.14!

which includes the drift field

bi~x![Di j ~x!ps~x!21
]ps~x!

]xj
52

Di j ~x!

kBT

]Vs~x!

]xj
,

~3.15!

is a first-order differential operator like the Liouville oper
tor of classical mechanics and therefore can be associ
with the deterministic dynamics of the system. If the cont
bution of the Laplace-Beltrami operator is neglected, de
ministic solutions for the nonequilibrium probability are d
rived in the form

ps~x;t !5d„x2 x̃~ t !…, ~3.16!

whered~x2x8! is the Dirac delta distribution associated wi
integrals like Eq.~3.9!:

f ~x8!5E
V
Ag~x!d~x2x8! f ~x!dx, ~3.17!

while x̃(t) is a trajectory in the phase spaceV to be calcu-
lated from the drift

dx̃ i~ t !/dt5bi„x̃~ t !…. ~3.18!

A simple picture based on the flow in the phase space
recovered fromGd , but this alone cannot give rise to accep
able solutions of the FP equation because of the absenc
relaxation to the equilibrium according to Eq.~2.4!. On the
other hand, the deterministic solutions such as Eq.~3.16!
might be good approximations in the presence of large dr
when the contributions of the Laplace-Beltrami opera
could be neglected.

It should be emphasized that trajectories~3.18! are invari-
ant with respect to change of variables because of the c
riant forms of the drift~3.15! and of the deterministic opera
tor Gd of Eq. ~3.14! as well. This invariance relies on th
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existence of a metric tensorgi j (x) ~the boundary layer ex
pansion also requires a metric tensor for the definition of
invariant distance; see Sec. IV!. For a given physical prob
lem, one might choose it among the observables having
correct tensorial properties. On the other hand, only the
fusion tensor is available for this purpose in the form
analysis of the FP equation of Smoluchowski type. The
fore, as done in past analyses of the covariant FP equa
@16–19#, we shall first use the metric tensor

gi j ~x!5Di j ~x!, ~3.19!

whereDi j denotes the inverse of matrixDi j . Qualitatively,
this is equivalent to scaling the distances according to
square root of the mean-squared displacements in the
sence of the drift.

In order to show some typical trajectories deriving fro
Eq. ~3.18!, let us introduce the two-dimensional model th
will be used as the test case throughout the paper. It is c
acterized by the bistable potential

V~x1,x2!/kBT5D@~x1/x0!
221#212D@~x2/x0!cot~a/2!#2,

~3.20!

where ~6x0,0! are the locations of the minima,D is the
barrier height inkBT units of the saddle point at the origin
anda is the aperture angle of the saddle point~i.e., the angle
between the two branches of the equipotential contour p
ing through the saddle point forx1>0! and a constant bu
anisotropic diffusion tensor

Di j5Dsds
i ds

j1Dfdf
i df

j , ~3.21!

whereds anddf are the principal directions (dk
i dk8

i
5dk,k8)

of its slowDs and fastDf components (Ds<Df). The angle
u between the fast component directiondf with respect to the
x250 axis is used to specify its orientation. All the report
results, except those of Fig. 7, are derived with the se
parameters

D55, a590°, u535°, ~3.22!

which ensures the validity of the time-scale separation~2.13!
for the kinetic modes,l2/l1 being in this case greater than 3
independently of the anisotropy ratioDf /Ds @40#. Since
u,a/2, the fast diffusion componentDf mainly drives the
saddle-point crossing, and with large values of the diffus
anisotropyDf /Ds one can investigate the kinetic control b
the the slow diffusion component far away from the sad
point @13#. In the analysis of the effects of diffusion aniso
ropy, another model has often been employed character
by a diagonal diffusion matrix, but with a potential functio
that includes also a bilinear coupling between the two co
dinates@12,20,24#. However, one can easily demonstrate t
equivalence of the two models by performing the line
change of variables leading to a separated potential like
of Eq. ~3.20!. In Fig. 1 a set of equipotential lines of Eq
~3.20! are represented, while some trajectories of Eq.~3.18!
are drawn in Fig. 2 forDf /Ds510. The deterministic flow
has three stationary points: the stable states of the sys
which correspond to the potential minimax̂15(2x0,0) and
x̂25(x0,0), and the saddle point at the origin, which is
unstable point of hyperbolic type. All the trajectories co
n
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verge to the stable states, except those reaching the sa
point and defining the deterministic separatrix of the pro
lem.

The deterministic approximation for the site-localizin
functions is derived by neglecting the Laplace-Beltrami co
tribution GLB in Eq. ~2.18!,

bi~x!
]

]xi
Ga~x!50, ~3.23!

that is, by isolating the leading term of Eq.~2.19! in the
low-temperature limitT→0 for fixed Di j (x) and Vs(x).
Then each site-localizing function should be constant alon
trajectory derived from Eq.~3.18!. Since all the trajectories
~without considering those of the separatrix! converge to
stable states, a site-localizing function can assume on
finite set of values. The standard partition@15# of the phase
space is done by including into the same domain of attrac
Va all the points that belong to trajectories converging to
stable statex̂a . The separatrix]Vab between two adjacen

FIG. 1. Equipotential contours from Eq.~3.20! with parameters
of Eq. ~3.22! for V/kBT51–4 ~dotted lines!, for V/kBT55 ~con-
tinuous line!, and forV/kBT56–10 ~dashed lines!. The potential
minima are located at the circles, while the diamond identifies
saddle point. The long~short! arrows are directed along the fa
~slow! principal direction of the diffusion matrix~3.21!.

FIG. 2. Set of trajectories~3.18! for Df /Ds510, with the heavy
lines identifying those of the separatrix. The dotted line is the eq
potential contour through the saddle point.
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4924 55GIORGIO J. MORO AND FRANCO CARDIN
domains of attractionVa andVb is associated with the tra
jectories ending up in unstable points of hyperbolic type~see
Fig. 2!. Correspondingly, the site-localizing functions in th
deterministic approximation are constant within each dom
of attraction and, by taking into account Eq.~2.15!, one de-
rives the explicit form

Ga~x!5 H10 if xPVa

otherwise, ~3.24!

that is, a function that is discontinuous along the boundar
the domainVa . Because of the discontinuity, such a simp
approximation cannot be employed to derive the transit
rate according to Eq.~2.18!. The calculation of transition
rates requires a continuous form of site-localizing functio
with smooth changes from the extrema 0 and 1 when pas
through the separatrix~see Sec. IV!. On the contrary, the
calculation of equilibrium site populations according to E
~2.14! is possible since the derivatives of site-localizi
functions are not required. Because of the step function
havior ~3.24!, this is equivalent to the integration ofps

eq(x)
within a domain of attraction

Pa
eq5E

V
Ag~x!Ga~x!ps

eq~x!dx

5~1/Z!E
Va

Ag~x!exp$2Vs~x!/kBT%dx, ~3.25!

whereZ is the normalization

Z[E
V
Ag~x!exp$2Vs~x!/kBT%dx. ~3.26!

Sometimes it is convenient to use the free energyFa to ac-
count for the equilibrium population of sitea,

Pa
eq5exp~2Fa /kBT!/Z. ~3.27!

An analytical estimate of the free energyFa ,

Fa.V~ x̂a!1
kBT

2
lnUdetH F ]2Vs~x!

]xi]xj G
x5 x̂a

Y2pkBTJ U ,
~3.28!

is derived by applying the Laplace method@41# to the inte-
gral ~3.25! after a parabolic expansion of the potential abo
the stable state

Vs~x!.Vs~ x̂a!1
1

2 F]2Vs~x!

]xi]xj G
x5 x̂a

~xi2 x̂a
i !~xj2 x̂a

j !.

~3.29!

In Sec. II we identified the stable states with the minim
of the mean-field potentialV(x) for the equilibrium distribu-
tion ~2.2!. This is certainly legitimate in the presence of
constant diffusion tensor, but in the general case the cor
choice is necessarily provided by the stationary points of
~3.18! since only they are truly invariant with respect to t
change of variables. Therefore, the minima of the scalar
tential Vs(x) @Eq. ~3.8!# should be considered as the tru
in

f
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stable statesx̂a , thus taking into account the possible effec
of the coordinate dependence of the diffusion tensor.

IV. LAYER EXPANSION ABOUT THE DETERMINISTIC
SEPARATRIX

The method of the boundary layer expansion has b
developed by Matkowsky and Schuss@14,15# originally for
the calculation of the mean exit time from a given doma
The same method can be employed to derive a smooth f
of site-localizing functions across the deterministic sepa
trix, thus overcoming the discontinuity of approximatio
~3.24!. In this section the bistable problem in two dimensio
will be examined in all generality, and the comparison w
the exact numerical results will be done for the model syst
specified by Eqs.~3.20! and ~3.21!. The invariance of the
layer expansion will be ensured by identifying the met
tensor with the diffusion tensor according to Eq.~3.19!. We
shall continue to use explicitly the notation for the met
tensor in order to introduce a geometrical description of
layer about the separatrix, which can be employed also w
alternative choices ofgi j (x) ~see Sec. V!.

The layer expansion takes a simple form by using as
ordinates the displacementl along the separatrix and the dis
tancer from the separatrix. Let us specify the coordinates
the separatrix]Vab in a parametrized form

x~l!5„x1~l!,x2~l!…, ~4.1!

with a real parameterl. Because of the Riemann structu
attached to the manifoldV, one can employ the invarian
distance

l ~l!5E
0

l

dl8Fdxi~l8!

dl8
gi j „x~l8!…

dxj~l8!

dl8 G1/2 ~4.2!

instead of the arbitrary parameterl to denote the points a
the separatrix. The unit vector locally tangent to the sepa
trix is then defined as

Ti~ l ![dxi~ l !/dl, ~4.3!

with the normalization derived from Eq.~4.2!,

Ti~ l !gi j „x~ l !…Tj~ l !51. ~4.4!

As long as the separatrix is a particular solution of the de
ministic equation~3.18!, the drift at the separatrix must b
parallel toTi( l ), that is,

bi„x~ l !…5B~ l !Ti~ l !, ~4.5!

with the scalar functionB( l ) determining the magnitude o
the drift. The metric tensor allows the definition of the un
vectorNi( l ) orthogonal to separatrix at a given positionl ,

Ni~ l !gi j „x~ l !…Tj~ l !50,
~4.6!

Ni~ l !gi j „x~ l !…Nj~ l !51.

Then the displacement alongNi( l ) supplies the natura
choice for the distancer from the separatrix. In order to dea
with an invariant distancer ~which is, independent of the
starting coordinate representationx!, one should introduce
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the geodetic linexi~m! orthogonal to the separatrix at th
position l as solution of the equation

d2xi~m!

dm2 1G jk
i
„x~m!…

dxj~m!

dm

dxk~m!

dm
50, ~4.7!

with [dxi(m)/dm]m50}N
i( l ) as the boundary condition an

G jk
i the standard Christoffel symbol derived from the met

tensor@39#. Notice that the geodetics are straight lines if t
metric tensor is constant sinceG jk

i 50 in such a case. The
invariant distancer from the separatrix is calculated by a
plying to these geodetics the definition of Riemann arclen
measure like in Eq.~4.2!.

Distancesr and l supply the natural representation f
performing the layer expansion, and in the following w
shall employ the FP operator expressed in these coordin

y[~y1,y2![~r,l !. ~4.8!

Correspondingly, both the diffusion tensor and the drift fie
assume a very simple form at the separatrix. By taking i
account that

S ]xi~y!

]y1 D
r50

5Ni~ l !, S ]xi~y!

]y2 D
r50

5Ti~ l !, ~4.9!

a unitary metric tensor~and therefore the diffusion tenso
also! is obtained from Eq.~3.4! for r50,

@gi j ~y!#r505d i j , @Di j ~y!#r505d i j . ~4.10!

From Eq.~4.5! one derives the drift in they representation

@b1~y!#r5050, @b2~y!#r505B~ l !, ~4.11!

with, according to Eq.~3.15!, B( l ) determined by the gradi
ent of the scalar potentialVs(y) along the separatrix

B~ l !52
1

kBT
S ]Vs~y!

] l D
r50

. ~4.12!

The dependence ofb1(y) on the distance from the separatr
is specified for smallr as

b1~y!5v~ l !r1O~r2!, v~ l ![F]b1~y!

]r G
r50

,

~4.13!

with 1/v( l ) determining the time scale for the motion o
thogonal to the separatrix. It should be stressed out that
ordinatesy employed in the layer expansion are independ
of the starting representationx. Because of the invarian
character of the measure employed in their definition,
same values ofy would be recovered for a given point ofV
also by using a different set of coordinatesx85x8(x) for the
FP equation. This feature ensures the invariance of the l
expansion with respect to the different but equivalent rep
sentations of the same stochastic problem.

Let us now analyze Eq.~2.19! for the calculation of site-
localizing functions in they representation
h

es:

o

o-
t

e

er
-

F 1

Ag~y!

]

]yi
Ag~y!Di j ~y!

]

]yj
1bi~y!

]

]yi GGa~y!50

~4.14!

by performing a low-temperature expansion, that is, by sc
ing the temperature asT→eT for fixed Di j (y) andVs(y).
Because of the relation~3.15!, this is equivalent to scaling in
Eq. ~4.14! the drift asbi(y)→bi(y)/e by keeping the diffu-
sion tensor fixed. The layer expansion is implemented
invoking the working hypothesis that in the limite→0 the
site-localizing functionGa is invariant after anAe scaling of
the distance from the separatrix, that is,

Ga~r,l !5Ĝa~r/Ae,l !1O~Ae!, ~4.15!

with Ĝa~•,•! independent ofe. The leading term of Eq.~4.14!
is of first order with respect to 1/e and can be isolated by
considering the limit

lim
e→0

F e

Ag~y!

]

]yi
Ag~y!Di j ~y!

]

]yj
1bi~y!

]

]yi G Ĝa~r/Ae,l !

50. ~4.16!

After the substitutionr→rAe the final equation for the
asymptotic site-localizing functions is derived in the form

F ]2

]r2
1B~ l !

]

] l
1v~ l !r

]

]r GGa~r,l !50, ~4.17!

wheree51 has been restored. The third term of Eq.~4.17!
derives from the contribution

lim
e→0

b1~r,l !
]Ĝa~r/Ae,l !

]r
5

]Ĝa~r8,l !

]r8
lim
e→0

b1~r8Ae,l !

Ae

5r8
]Ĝa~r8,l !

]r8
lim
r→0

b1~r,l !

r
,

~4.18!

with r85r/Ae and the last limit being the derivative of th
orthogonal component of the drift sinceb1(0,l )50.

The trial function for the solution of Eq.~4.17! is pro-
vided by the error-function profile with respect to the d
tancer

Ga~r,l !5
1

2
6
1

2
erf$r/2s~ l !%5

1

2
6

1

Ap
E
0

r/2s~ l !
e2t2dt,

~4.19!

with the width s( l ) dependent on the positionl along the
separatrix. The proper choice of the sign in Eq.~4.19! en-
sures an asymptotic behavior forr→6` in agreement with
Eq. ~2.15!. After substitution of the trial function into Eq
~4.17!, the following differential equation is recovered fo
the width:

B~ l !
ds~ l !2

dl
52v~ l !s~ l !221. ~4.20!
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Near the saddle pointl S of Vs(y), whereB( l S)50, a linear
expansionB( l )}( l2 l S) holds. Therefore, the only finite so
lution of Eq. ~4.20! at l S is given by the equation

1/s~ l S!
252v~ l S!, ~4.21!

which supplies the boundary condition for solving Eq.~4.20!
@42#. Even if the analytical solution can be written explicit
@14,15#

s~ l !252E
l S

l dl8

B~ l 8!
expS E

l 8

l

dl92v~ l 9!/B~ l 9! D , ~4.22!

the numerical solution of Eq.~4.20! with a finite-difference
scheme is more convenient when functionsv( l ) and B( l )
have a complicated dependence onl . On the other hand, Eq
~4.22! allows one to demonstrate thats( l )2 is always a posi-
tive quantity.

Once the profile of site-localizing functions has been
termined, one can calculate the transition ratew~a→b! ac-
cording to Eq.~2.18!. By using they representation and tak
ing into account that according to Eq.~2.17!
Gb(y)512Ga(y), the following equation is derived:

w~v→b!5E dyAg~y!exp$@Fa2Vs~y!#/kBT

2r2/2s~ l !2% f i~y!Di j ~y! f j~y!/4ps~ l !2,

~4.23!

where

f 151, f 2~y!52
r

s~ l !

ds~ l !

dl
~4.24!

and the normalizationZ @Eq. ~3.26!# of the equilibrium dis-
tribution is eliminated by means of the free energyFa of Eq.
~3.27!.

In agreement with the hypothesis of the layer expans
one can simplify the integration in Eq.~4.23! by ~i! evaluat-
ing the diffusion tensor at the separatrixDi j (y).d i j @and,
correspondingly,g(y).1# and ~ii ! performing a parabolic
expansion of the scalar potential with respect to the dista
r,

Vs~y!.@Vs~y!#r501
r2

2 F]2Vs~y!

]r2 G
r50

5Vs~ l !1
r2

2
Vs

~2!~ l !, ~4.25!

with Vs( l )5Vs„x( l )…. Notice that the first-order term i
missing because [b1(y)] r5050. In this way the transition
rate can be derived by means of an integration along
separatrix

w~a→b!5E dl exp$@Fa2Vs~ l !#/kBT%
h~ l !

A8ps~ l !2

3$11@h~ l !ṡ~ l !/s~ l !#2%, ~4.26!

whereṡ( l )[ds( l )/dl and
-

n,

ce

e

1/h~ l ![A1/s~ l !21Vs
~2!~ l !/kBT. ~4.27!

In the presence of a sharply defined minimum ofVs( l ) cor-
responding to the saddle point atl S , one can perform an
analytical integration onl after the parabolic expansion o
Vs( l ), thus recovering the result of the Kramers-Lang
analysis of the flux at the saddle point

w~v→b!5
v~ l S!

2p
exp$2@FS2Fa#/kBT%, ~4.28!

where the free energyFS of the saddle point is given by th
same relation~3.28!, but with x( l S) substitutingx̂a . If the
diffusion tensor is independent of the coordinatesx, in which
caseVs(x) andV(x) differ by an additive constant accordin
to Eq. ~3.8!, Eq. ~4.28! is equivalent to the result of the
standard Kramers-Langer analysis of the flux over the sad
point @3#. However, some differences could emerge with d
fusion tensors explicitly dependent on the coordinates
cause of the different functional form of the mean-field p
tential V(x) and its scalar counterpartVs(x) @Eq. ~3.8!#. In
this case, the advantage of using a covariant formal
should be evident because it leads to an approximation~4.28!
that is independent of the coordinate representation.

The full integration in Eq.~4.26! along the separatrix is
required when the transition process is driven by the sys
dynamics far away from the saddle point. This is the case
our model system with the parameters of Eq.~3.22!. In order
to perform a comparison, standard numerical methods~see
Appendix B of Ref.@9#! have been used to calculate both t
exact transition ratew5w(1→2)5w(2→1) and the exact
site-localizing functions. A simple discretization of the int
gral in Eq. ~4.26! allows the calculation of the approximat
rate when a finite-difference scheme is employed for the
lution of Eq. ~4.20!. Notice that the explicit relation

V~2!~ l !5Ni~ l !Nj~ l !S ]2V~x!

]xi]xj D
r50

52v~ l ! ~4.29!

can be used for the frequency factor when the metric ten
is constant.

In Fig. 3 the numerical results from Eq.~4.26! and the
approximations~4.28! for the transition rate are reported as
function of the diffusion anisotropyDf /Ds . For large diffu-
sion anisotropies, the transition rate is overestimated by
Kramers-Langer result, which takes into account only
crossing near the saddle point. This is the situation where
layer expansion should be useful as long as it describes
diffusion process far away from the saddle point. Howev
as the data of Fig. 3 clearly show, it improves only partia
the Kramers-Langer result, and large deviations from the
act rates are found for increasing ratiosDf /Ds .

In order to understand this finding, the exact si
localizing functions obtained numerically should be an
lyzed. As matter of fact, they have an error-function profi
in agreement with Eq.~4.19! ~see Fig. 4!, but about a line
different from the deterministic separatrix. This featur
clearly emerges by comparing the deterministic separa
with the so-called stochastic separatrix@43#, defined as the
points where the exact site-localizing functions take
value 1

2, i.e., halfway between their extrema@44#,
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Ga„x~l!…5 1
2 . ~4.30!

Of course, the two separatrices should be identical if
exact site-localizing functions is reproduced by the appro
mation ~4.19!. In Fig. 5 both deterministic and stochast
separatrices are represented in two cases. In the low ran
diffusion anisotropy when the layer expansion reprodu
correctly the transition rate, the two separatrices are c
enough. On the contrary, for large values ofDf /Ds when
significant deviations are found by calculating the rate
cording to Eq.~4.26!, the deterministic and stochastic sep
ratrices are quite different. Then one can draw the conclus
that the use of the deterministic separatrix is mainly resp
sible for the errors in the calculations of the transition ra
This calls for a generalization of the layer expansion, wh
should be able to determine also the correct stochastic s
ratrix, instead of using the deterministic separatrix from
very beginning~see Sec. V!.

FIG. 3. Scaled transition rate as a function of the anisotro
ratioDf /Ds with parameters of Eq.~3.22!. Circles, exact numerica
results; dashed line, Eq.~4.26! from the layer expansion about th
deterministic separatrix; dotted line, Eq.~4.28! from the Kramers-
Langer theory.

FIG. 4. Profile of the site localizing functionG1(x) obtained
numerically forDf /Ds510.
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One should notice that the stochastic separatrix in Fig
for Df /Ds51000 is almost a straight line parallel to the fa
principal directiondf of the diffusion tensor~3.21! ~see Fig.
1 for the direction ofdf!. Also the deterministic separatri
far from the origin tends to be parallel todf because in the
solution of Eq.~3.18! the direction of fast diffusion is fa-
vored by a strong diffusion anisotropy. This behavior, ho
ever, cannot be realized near the origin because it wo
correspond to a deterministic trajectory climbing the pote
tial energy.

Another drawback of the previous treatment derives fr
the small width of the layer where approximation~4.19! can
be employed. As matter of fact, the coordinatesy5(r,l ) are
not suited to represent the FP equation in the entire dom
V of the stochastic variables since the geodetic lines
thogonal to the separatrix in two different pointsl and l 8
might cross, say, in corresponding with distancesr and r8,
respectively. Then the crossing point would be labeled
two sets of coordinates~l ,r! and (l 8,r8). In order to deal
with a uniquely defined representationy, only the points of
V devoid of crossings among the orthogonal geode
should be considered. They representation can be adopte
only on a strip ofV defined by the condition

uru,rc~ l !, ~4.31!

whererc( l ) is the shortest of all the crossing distances alo
the geodetic orthogonal to the separatrix atl . With large
diffusion anisotropies, some crossing points are very clos
the deterministic separatrix, as shown in Fig. 6, where l
connecting the points atrc( l ) is displayed forDf /Ds51000.
Correspondingly, the layer expansion has to be confined
very narrow strip much smaller than the widths of the site-
localizing functions. The ultimate reason for such a behav
is the identification~3.19! of the metric tensor with the dif-
fusion tensor. In fact, the presence of a large diffusion
isotropy generates an orthogonal directionNi( l ) almost par-
allel to Ti( l ) when there are small differences between
orientations of the separatrix and of the fast diffusion dire
tion df . Such a distortion of the orthogonal direction lowe
the crossing distancesrc( l ). Also this drawback should be

y FIG. 5. Deterministic separatrices~dashed line! and stochastic
separatrices~continuous line! for two values of diffusion anisotropy
Df /Ds as reported in the figure.
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4928 55GIORGIO J. MORO AND FRANCO CARDIN
eliminated in a more accurate description of site-localiz
functions by means of a different choice of the metric tens

Even if the crossing distancerc can be enlarged by chang
ing the metric tensor, in any case finite values are expec
Therefore, approximation~4.19! cannot be used in the entir
phase space and some sort of cutoff should be introdu
while still preserving the continuity of site-localizing func
tion in order to recover finite transition rates from Eq.~2.18!.
After introducing a parameterj satisfying the upper bound

j< inf l@rc~ l !/s~ l !#, ~4.32!

the trial function~4.19! can be modified as

Ga5H 126
1

2

erf$r/2s~ l !%

erf~j/2!
if ur/s~ l !u,j

0 or 1 otherwise.

~4.33!

This function is still a solution of Eq.~4.17! within the layer
uru,js( l ); it is continuous and has the correct asympto
behavior for r→6`. One can use such a modified sit
localizing function in the calculation of the transition rat
and the same result~4.26! is obtained besides the correctio
factor 1/erf~j/2!2. This, however, does not improve at all th
agreement with the exact kinetic rates shown in Fig. 3 si
the correction factor is always greater than unity.

The comparison in Figs. 3 and 5 between the layer exp
sion method and the exact numerical results is done for
parameters of Eq.~3.22! of the model. However, the sam
general behavior is found in other cases as long asuuu,a/2
~and provided the separability between kinetic modes
local equilibration modes@40#!, that is, when the fast diffu-
sion direction is within the aperture of the saddle point.
particular, the stochastic separatrix tends always to
aligned along the fast diffusion directiondf for large diffu-
sion anisotropies, this direction not being allowed for t
deterministic separatrix near the saddle point. A comple
different behavior is found whenuuu.a/2 for fast diffusion
directions outside the aperture of the saddle point. In f
satisfactory results are recovered from the layer expan
about the deterministic separatrix that is very close to

FIG. 6. Deterministic separatrix~dashed line! and the points at
the crossing distancerc( l ) ~continuous line! for Df /Ds510.
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stochastic separatrix obtained numerically, as shown in
7 for the angleu changed to 60°, i.e., for parameters

D55, a590°, u560°. ~4.34!

Also in this case the stochastic separatrix tends to be alig
with df for Df /Ds large enough, but also the determinist
separatrix follows the same direction since foruuu.a/2 this
does not violate the requirement of deterministic motion w
decreasing potential energy. Notice that, given the profile
the separatrix, only the points near the saddle point cont
ute significantly to the rate in the integral~4.26! and there-
fore approximation~4.28! holds.

V. VARIATIONAL LAYER EXPANSION

Let us return to our model system with the parameters
Eq. ~3.22!. The general message arising from the compari
with the numerical results is that the error-function profile
reproduced by the exact site-localizing functions, but in
cations far from the deterministic separatrix when the dif
sion anisotropy is large enough. This suggests that the fu
tional form ~4.33! can be used to approximate the sit
localizing functions provided that the separatrix
considered as a parametric function to be optimized in
variational framework based on the minimum of the dec
rate~2.20!. In order to avoid distortions of the directions fo
the distancer towards the separatrix, also the metric tens
should be optimized. Drozdov and Talkner too have p
posed a variational method relying on the error-function p
file of the characteristic functions, but assuming a strai
stochastic separatrix@24#.

The general method will be presented for problems in t
dimensions without limitations on the number of stab
states, while the bistable model specified by Eqs.~3.20!–
~3.22! will be considered for its application. The site
localizing function of Eq.~4.33! will be employed in the
variational calculations with the following parametric fun
tions: the stochastic separatrix, the width of the si
localizing function, and the metric tensor along the separa

x~l!, s~l!, gi j ~l![gi j „x~l!…. ~5.1!

FIG. 7. Deterministic separatrices~dashed line! and stochastic
separatrices~continuous line! for parameters of Eq.~4.34! and dif-
fusion anisotropiesDf /Ds reported in the figure.
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Specific parametric functions should be considered for e
site-localizing functionGa(x), but, in order to avoid a too
cumbersome notation, the explicit reference to the statea is
left implicit in functions of Eq.~5.1!.

For the sake of convenience, we choose the parametl
such that the tangent vector ofx~l! has a unitary norm in the
Cartesian metricdi j ~i.e., d i j a

iaj5aia
i[aiai for all a!,

t~l![dx~l!/dl, t i~l!t i~l!51. ~5.2!

Also the unitary vectort'~l!, locally orthogonal to the sepa
ratrix in the Cartesian metric

t'
i ~l!t'

i ~l!51, t'
i ~l!t i~l!50, ~5.3!

will be employed when necessary.
Once the metric tensorgi j ~l! is given, the invariant dis-

tancel , the covariant tangent vectorTi( l ), and the covariant
orthogonal vectorNi( l ) along the stochastic separatrix a
derived like in Sec. IV, with the set of complementary ve
tors

Ni~ l ![gi j ~ l !N
j~ l !, Ti~ l ![gi j ~ l !T

j~ l !, ~5.4!

wheregi j ( l )[[gi j (l)] l5l( l ) . For a givenl , the distancer
from the separatrix will be measured along the straight l
at Ni( l ),

xi~r,l !5xi~ l !1rNi~ l !. ~5.5!

Also the coordinate dependence of the metric tensor sh
be fully specified and we will employ the following form
requiring only the knowledge of the metric tensor at the s
chastic separatrix:

@gi j ~x!#x5x~r,l !5gi j ~ l !. ~5.6!

This is equivalent to assuming a unitary metric tensor in
y5(r,l ) representation:

gi j ~y![
]xi 8

]yi
gi 8 j 8~x!

]xj 8

]yj
5d i j , ~5.7!

the derivatives of the coordinates being calculated accord
to Eq. ~5.5!. Correspondingly, the parameterr can be iden-
tified with the distance along the orthogonal geodetics gi
as straight lines in the direction ofNi( l ). Equation ~5.6!,
which is equivalent to a constant continuation of the me
tensor along the orthogonal directions, is the first approxim
tion invoked in our variational procedure. Of course, also
dependence of the metric tensor on the orthogonal dista
should be explicitly parametrized in a more complete tre
ment, but this would require an overly complicated var
tional procedure. The shortcoming of such an approxima
is that the metric tensor~5.6! relies on the choice of coordi
natesx. If the same definition~5.5! is applied after a nonlin-
ear change of variablesx°x8(x), a different set of orthogo-
nal geodetics would be derived and therefore also a diffe
metric tensor. On the other hand, the layer expansion
meaningful in the coordinate representations such that
change of site-localizing function is confined to a narro
layer about the stochastic separatrix. Correspondin
smooth changes of variables do not modify substantially
ch
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proximation~5.6! as long as small distancesr only need to
be considered. It should also be evident that any lin
change of variables with constant coefficients preserves
structure of the metric tensor~5.6!.

Also in the variational treatment, the layer expansion
conveniently done by employing coordinatesy[(r,l ). The
decay rate~2.20! can be written in the following form afte
insertion of the site-localizing function~4.33!:

wa5
1

4p erf2~j/2!
E e@Fa2Vs~y!#/kBT2r2/2s~ l !2f i~y!

3Di j ~y! f j~y!/s~ l !2dy ~5.8!

with functions f i(y) given by Eq.~4.24! and parameterj
satisfying the constraint Eq.~4.32!. As the second approxi
mation, the diffusion matrix is calculated at the separatrix

Di j ~y![Di j ~r,l !.Di j ~0,l !. ~5.9!

This is justified by the hypothesis that only the integration
a narrow layer about the separatrix is required because o
steep change of site-localizing functions. Notice that the
quired diffusion elements can be derived from the diffusi
tensor in thex representation according to the relations

D11~0,l !5Ni~ l !@D
i j ~x!#x5x~ l !Nj~ l !,

D12~0,l !5Ni~ l !@D
i j ~x!#x5x~ l !Tj~ l !,

D22~0,l !5Ti~ l !@D
i j ~x!#x5x~ l !Tj~ l !. ~5.10!

The same hypothesis allows the parabolic expansion of
potentialVs with respect to the distancer,

Vs~y!.@Vs~y!#r501rF]Vs~y!

]r G
r50

1
r2

2 F]2Vs~y!

]r2 G
r50

5Vs~ l !1rVs
~1!~ l !1

r2

2
Vs

~2!~ l !; ~5.11!

this is the third approximation invoked in our variation
treatment. Notice that because of Eq.~5.6!, the metric tensor
depends only on the coordinatel and therefore the derivative
of g in the scalar potential~3.8! is not required in the calcu
lation of the expansion coefficients:

Vs
~1!~ l !5Ni~ l !F]V~x!

]xi G
x5x~ l !

,

~5.12!

Vs
~2!~ l !5Ni~ l !Nj~ l !F]2V~x!

]xi]xj G
x5x~ l !

.

A major difference with respect to the layer expansion ab
the deterministic separatrix is the presence of the first-or
term in the expansion~5.11!. Correspondingly, the exponen
tial function in Eq. ~5.8! generates a Gaussian profile ce
tered at a finite distanceDr from the separatrix,

Dr~ l !52h~ l !2Vs
~1!~ l !/kBT, ~5.13!

whereh( l ) is given by Eq.~4.27!. With all these ingredients
the analytical integration on the distancer can be performed
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4930 55GIORGIO J. MORO AND FRANCO CARDIN
in Eq. ~5.8!, thus obtaining the following relation requirin
only functions parametrically dependent on the coordinal
along the separatrix:

wa5
1

A8p erf2~j/2!
E e@Fa2Vs~ l !#/kBT1Dr2/2h2

h

s2

3$hi~ l !D
i j ~0,l !hj~ l !1D22~0,l !@hṡ~ l !/s#2%dl,

~5.14!

with

h151, h2~ l !52Dr~ l !ṡ~ l !/s~ l !. ~5.15!

Equation~5.14! is the starting point for the numerical imple
mentation of the variational method.

First, however, one should eliminate the degeneracy
the decay rate with respect to the variational parameters,
the possibility that different sets of parametric functions~5.1!
determine the same decay ratewa . Only without degeneracy
can one find unambiguously the optimal variational para
eters from the minimization of the decay rate. The ident
cation of the degeneracies might be difficult because of
inclusion of the metric tensorgi j among the variational pa
rameters. A much simpler analysis can be done by using
tangent vectorTi and the orthogonal vectorNi . On the other
hand, a direct relation exists between these vectors and
metric tensor. In fact, the metric tensor can be easily deri
once these vectors are fixed and, in particular, the dete
nant of the metric tensor can be calculated as

1/g~ l !5@Ti~ l !t i~ l !#2@Nj~ l !t'
j ~ l !#2. ~5.16!

Therefore, in the following analysis, reference is made
vectorsTi andNi with the metric tensor calculated accor
ingly.

One type of degeneracy is associated with the chang
magnitude of the tangent vector. Let us consider a se
parametric functions distinct from those of Eq.~5.1! because
of a new metric tensorḡi j ~l! defined by a scaling of the
tangent vector

T̄i5mTi , ~5.17!

with m5m~l!, without modifications of the orthogonal vecto
Ni and, according to Eq.~5.5!, also of the distancer. Corre-
spondingly, the same parametersV s

(1), V s
(2), h, andDr are

recovered at a given point of the separatrix while, becaus
Eq. ~4.2!, the new distancel̄ along the separatrix should obe
the relation

dl̄5dl/m. ~5.18!

One can easily show that the quantity in the curly bracket
Eq. ~5.14! does not require modifications. On the contra
the exponential function does change because the scala
tential ~3.8! includes also a contribution of the metric tens

exp$2V̄s~l!/kBT%5
e2V„x~l!…/kBT

Aḡ~l!
5m

e2V„x~l!…/kBT

Ag~l!

5me2Vs~l!/kBT, ~5.19!
f
e.,

-
-
e

he

he
d
i-

o

in
of

of

in
,
po-

where Eq.~5.16! has been employed for transforming th
determinant of the metric tensor. Given all these corresp
dences, the same decay ratewa is obtained by performing
into Eq. ~5.14! the change of the variable of Eq.~5.18!, thus
demonstrating the equivalence of the two sets of variatio
parameters. Such a degeneracy is conveniently remove
using tangent vectors with an unitary norm in the Cartes
metric

Ti5t i , ~5.20!

which, because of Eq.~5.2!, ensures the identityl5l.
A second type of degeneracy can be associated with

scaling of the orthogonal vector

N̄i5mNi , ~5.21!

with m5m~l!, without modifications of the tangent vectorTi .
According to Eq. ~5.5!, the distance from the separatr
scales asr̄5r/m. Correspondingly, a new metric tenso
ḡi j ~l! is derived and one can calculate the decay rate w
the same separatrix of Eq.~5.1!; the width changed as
s̄5s/m in order to preserve the shape of the site-localiz
function. Like in the previous analysis, one can demonstr
that the decay rate does not change. Also this degene
should be eliminated, and this is conveniently done by fix
the magnitude of the complementary vectorNi ,

Ni5t'
i . ~5.22!

In this way the parameterr, as well as the associated widt
s, assumes the meaning of distance from the separatrix in
Cartesian metric, as derived from Eq.~5.5! for small enough
r,

r5t'
i @xi2xi~ l !#. ~5.23!

Correspondingly, a unitary determinantg( l )51 of the metric
tensor is obtained from Eq.~5.16! sincet'

j Nj5NjN
j51, and

the scalar potential along the separatrix can be identified w
the original mean-field potential

Vs~ l ![Vs„x~ l !…5V„x~ l !…[V~ l !. ~5.24!

Having fixed the magnitudes of both vectorsTi( l ) and
Ni( l ), one variable only is left for parametrizing the metr
tensor. The most convenient one is the anglec between vec-
torsNi( l ) andt'

i ( l ). In conclusion, the parametric function
required in the variational calculation is reduced to the s

x~l!, s~l!, c~l!, ~5.25!

to be used in the calculation of the decay rate according
Eq. ~5.14! with l5l as the integration variable.

In order to test the previous variational procedure,
bistable problem specified by Eqs.~3.20!–~3.22! has been
considered. In this case one can exploit the symmetry of
FP problem by imposing the conditionsx(2l)52x(l),
s~2l!5s~l!, andc~2l!5c~l!, where the saddle point ha
been taken as the origin for the parameterl. Correspond-
ingly, the integral~5.14! for the transition rate can be con
fined to the positive values ofl5l. Moreover, for computa-
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55 4931VARIATIONAL LAYER EXPANSION FOR KINETIC PROCESSES
tional purposes the stochastic separatrixx~l! is conveniently
parametrized in terms of the orientationu~l! of its tangent
vector t i~l!.

In order to deal with a finite-dimensional variational pro
lem, the discretization of the integral~5.14! is performed
with equally spaced mesh pointsli . In this way the rate
w5w15w2 becomes a function of the variational param
etersu~li!, s~li!, andc~li! at the mesh points and standa
algorithms@45# can be employed for the minimization ofw
with respect to these parameters. The contribution of e
integration point is weighted by the Boltzmann fact
exp$2V(l i)/kBT%. The points very far from the origin bring
a negligible contribution to the rate given the magnitude
the potential function~see Fig. 1!. Correspondingly, it is im-
possible to optimize the variational parameters in such lo
tions because of the insensitivity of the rate. Therefore,
optimization procedure has to be confined to a finite port
of the separatrix. In our calculations we have discretized
separatrix up toV(l)/kBT512, i.e., sevenkBT units over the
saddle point. Thirty mesh points forl>0 have been used t
achieve an accuracy better than 1% for the integral~5.14!. In
order to find the minimum of the rate within reasonable co
putation times, only five independent values~and equally
spaced with respect tol! for each parametric functionu~l!,
s~l!, andc~l! were considered by using a linear interpo
tion scheme to get their intermediate values. This proced
is justified by the rather smooth dependence onl of these
parameters in the considered examples~0.1<s/x0<0.2, c
andu varying in a range of 20°!.

Finally, a discussion is in order about the choice of t
parameterj of the trial function~4.33!. We have employed
the operative definition ofj,

j5cjinf
l

@rc~l!/s~l!#, ~5.26!

which agrees with the constraint~4.32! when the numerica
coefficientcj is in the range 0,cj<1. For a given coefficient
cj , j depends on the variational parameters of Eq.~5.25!. In
particular, small values ofj are recovered from strongly ben
separatrices characterized by short crossing distancesrc~l!.
Then comparably large ratesw are derived from Eq.~5.14!
because of the error function term erf~j/2!2 in the denomina-
tor. In other words, the finite size of the layer, which is tak
into account by the parameterj, gives rise in the minimiza-
tion procedure to a penalty for highly bent profiles of t
separatrix. Only in this case can the variational procedure
implemented. In fact, the minimization of the rate becom
ill defined numerically when the layer with an infinite widt
is considered by assumingj5`, because of the instabilitie
arising from deformations of the separatrix towards serp
tine profiles and self-crossings. In most cases, the resul
the variational procedure are weakly dependent on the ch
of the numerical parametercj , which can be well fixed at the
upper boundcj51. Some difficulties, however, arise in th
low range of diffusion anisotropiesDf;Ds because of the
presence of secondary minima for the rate, which can
eliminated by using smaller values ofcj . For this reason we
have employed the coefficientcj50.1 in all the calculations
ch
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for the results reported in Figs. 8–10. Correspondingly,
factor 1/erf2~j/2! contributes at most by 2% to the optimize
transitions rates.

A significant improvement with respect to the layer e
pansion about the deterministic separatrix is achieved by
ing the variational layer expansion. Satisfactory agreemen
found in the comparison with the exact transition rates,
shown in Fig. 8, the largest deviation being about 5%. T
evident improvement with respect to the method of Sec.
~cf. Fig. 3! derives in the first instance from a correct ide
tification of the separatrix. In Fig. 9 the comparison is do
between the exact stochastic separatrix and the variati
separatrix deriving from the optimization procedure for a
of diffusion anisotropies. In particular for large ratiosDf /Ds ,
the variational and the stochastic separatrices are nearly
incident. The progress with respect to the deterministic se
ratrix should appear evident by inspection of Fig. 5. Also t
width of the site-localizing functions can be compared w
the exact numerical solutions by examining their gradien
The derivative ofGa @Eq. ~4.19!# with respect to the distanc
r at the separatrix is given as

FIG. 8. Scaled transition rate as a function of the anisotro
ratioDf /Ds with parameters of Eq.~3.22!. Circles, exact numerica
results; continuous line, variational layer expansion.

FIG. 9. Variational separatrices~dashed line! and stochastic
separatrices~continuous line! for parameters of Eq.~3.22! and dif-
fusion anisotropiesDf /Ds reported in the figure.
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S ]Ga

]r D
r50

56
1

2Aps
. ~5.27!

According to Eq.~5.23!, r can be identified with the Carte
sian distance from the separatrix. Then the widths can be
derived from the the gradient ofGa at the separatrix, which
can be easily computed from the exact site-localizing fu
tions

1/s52ApUt'i ]Ga

]xi U
r50

. ~5.28!

In Fig. 10 both the exact numerical widths and those res
ing from the variational procedure are reported in two ca
as a functions of the position along the separatrix. Fair ag
ment is found with deviations of about 10%. On the contra
no simple way exists for identifying the anglec from the
exact site-localizing functions. On the other hand, the de
rate is weakly-dependent on this parameter, and substan
the same results reported in Figs. 8–10 would be recove
by constraining such an angle, say,c50. One can under-
stand it by considering the limit case of a straight separa
with a fixed width s. In this situation, the site-localizing
function ~4.19! does not depend on the anglec since Eq.
~5.23! determines the distance from the separatrix indep
dently of the direction ofNi . In actual cases, the separatrix
at least slightly bent,s depends on the position, and th
optimization procedure depends, even if weakly, onc~l!.

It should be mentioned that the variational optimization
usually much faster than the exact numerical solution of
stochastic problem, but its efficiency strongly depends on
initial guess for the parameters of Eq.~5.25!. On the other
hand, the variational layer expansion supplies only appro
mate results and therefore it cannot replace the nume
solution of the FP problem if exact results are required.

As a by-product of layer expansion method, one can
plain why the stochastic separatrix tends to be aligned w

FIG. 10. Dependence of the widths of the site-localizing func-
tion on the displacementl along the separatrix, for parameters
Eq. ~3.22! and two values of diffusion anisotropies, which are r
ported in the figure. Continuous lines, numerical exact resu
circles and squares, variational layer expansion.
-
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the directiondf of fast diffusion motion for large diffusion
anisotropies. Let us consider Eq.~5.14! under the simplifying
condition of a constant widths, such that the term in curly
brackets can be replaced by

D11~0,l !5t'
i t'

j @Di j ~x!#x5x~ l ! ~5.29!

according to Eqs.~5.10! and~5.22!. Its minimum is attained
whent'

i 5d s
i , i.e., t i5d f

i . It is precisely this term that domi
nates in the optimization of the decay rate whenDf /Ds→`,
so that the directiont i of the separatrix is forced to be pa
allel to the fast diffusion direction.

VI. CONCLUSION

Our objective was the determination of the shape of
characteristic functions describing the kinetic processes~i.e.,
the site-localizing functions! in two-dimensional Fokker-
Planck equations of Smoluchowski type. The starting po
was provided by the boundary layer expansion developed
Matkowsky and Schuss@14,15#. This method has been
implemented to the calculation of site-localizing functions
using the covariant form of the FP equation with the met
tensor chosen according to the diffusion matrix@16–19#. In
this way we have derived a simple form of the site-localizi
functions with an error-function shape about the determin
tic separatrix imposed by the drift. Correspondingly, t
transition rate was easily calculated by integration of
proper kernel along the separatrix. However, the compari
with the exact numerical results for a model bistable syst
evidenced large deviations on the transition rates when
diffusion matrix is highly anisotropic. The underlying reaso
is that the deterministic separatrix might be quite differe
from the stochastic separatrix of the exact numerical so
tions. Therefore we have generalized the procedure by c
sidering the separatrix as a parametric function to be o
mized in the variational calculation of the transition rate. T
variational method allowed also the inclusion of the met
tensor among the variational parameters. By taking into
count the invariance properties of the transition rate,
variational problem is confined to the following paramet
functions: the separatrix, the width of the site-localizin
function, and the direction for the displacement from t
separatrix. A finite-dimensional problem has been genera
and solved by discretizing the integral for the transition ra
Satisfactory agreement is found for both the separatrix
the transition rate in comparison with the exact numeri
solutions, thus demonstrating the capability of the variatio
procedure to reproduce the site-localizing functions.
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